
The Windows
Process Journey

Version 10
May-2024

By Dr. Shlomi Boutnaru

Created using Craiyon, AI Image Generator

https://www.craiyon.com/

Table of Contents

Table of Contents...2
Introduction..5
System Idle Process (PID 0)... 6
smss.exe (Session Manager Subsystem)... 7
csrss.exe (Client Server Runtime Subsystem)... 9
wininit.exe (Windows Start-Up Application)..11
winlogon.exe (Windows Logon Application).. 12
userinit.exe (Userinit Logon Application)... 12
dwm.exe (Desktop Window Manager).. 14
LogonUI.exe (Windows Logon User Interface Host).. 16
explorer.exe (Windows Explorer)... 17
svchost.exe (Host Process for Windows Services)... 18
ctfmon.exe (CTF Loader).. 20
audiodg.exe (Windows Audio Device Graph Isolation)... 21
rdpclip.exe (RDP Clipboard Monitor)...22
smartscreen.exe (Windows Defender SmartScreen)... 23
ApplicationFrameHost.exe... 24
RuntimeBroker.exe..25
logoff.exe (Session Logoff Utility)... 26
cscript.exe (Microsoft ® Console Based Script Host)... 27
wscript.exe (Microsoft ® Windows Based Script Host)... 28
utilman.exe (Utility Manager)..29
osk.exe (Accessibility On-Screen Keyboard)... 30
alg.exe (Application Layer Gateway Service)... 31
DrvInst.exe (Driver Installation Module)..32
runas.exe (Run As Utility)...33
cmd.exe (Windows Command Processor).. 34
conhost.exe (Console Window Host).. 35
tasklist.exe (Lists the Current Running Tasks)...36
rundll32.exe (Windows Host Process)...37
net.exe (Network Command).. 38
net1.exe (Net Command for the 21st Century)..39
TabTip.exe (Touch Keyboard and Handwriting Panel)...40
fontdrvhost.exe (Usermode Font Driver Host)..41
OpenWith.exe (Pick an App)...42
mavinject.exe (Microsoft Application Virtualization Injector)... 43
where.exe (Lists location of Files)... 44
NisSrv.exe (Microsoft Network Realtime Inspection Service)... 45

2

Hostname.exe (Hostname APP)... 46
mmc.exe (Microsoft Management Console)..47
msg.exe (Message Utility)...48
Magnify.exe (Microsoft Screen Magnifier)...49
mstsc.exe (Remote Desktop Connection)...50
curl.exe (cURL executable)...51
winver.exe (Version Reporter Applet)..52
arp.exe (TCP/IP Arp Command)... 53
WFS.exe (Microsoft Windows Fax and Scan).. 54
clip.exe (Copies the Data into Clipboard)..55
consent.exe (Consent UI for Administrative Applications)... 56
getmac.exe (Displays NIC MAC information)..57
defrag.exe (Disk Defragmenter Module)..58
msedge.exe (Microsoft Edge)...59
tzutil.exe (Windows Time Zone Utility).. 60
expand.exe (LZ Expansion Utility)... 61
WSReset.exe (Windows Store Reset).. 62
SlideToShutDown.exe (Windows Slide To Shutdown)...63
takeown.exe (Takes Ownership of a File)..64
dialer.exe (Microsoft Windows Phone Dialer)... 65
bthudtask.exe (Bluetooth Uninstall Device Task)...66
DisplaySwitch.exe (Windows Display Switch)..67
SpaceAgent.exe (Storage Spaces Settings)... 68
tar.exe (BSD tar Archive Tool).. 69
timeout.exe (Pauses Command Processing)..70
doskey.exe (Keyboard History Utility)... 71
fsquirt.exe (Bluetooth File Transfer)..72
label.exe (Disk Label Utility)... 73
forfiles.exe (Execute a Command on Selected Files)...74
eudcedit.exe (Private Character Editor).. 75
wmplayer.exe (Windows Media Player)... 76
dvdplay.exe (DVD Play Placeholder Application)... 77
comp.exe (File Compare Utility)...78
find.exe (Find String (grep) Utility)...79
mspaint.exe (Paint)..80
services.exe (Service Control Manager)..81
sc.exe (Service Control Manager Configuration Tool)... 82
phoneactivate.exe (Phone Activation UI).. 83
choice.exe (Offers the User a Choice)...84
qprocess.exe (Query Process Utility)..85
rasdial.exe (Remote Access Command Line Dial UI)...86

3

waitfor.exe (Wait/Send a Signal Over a Network)... 87
tsdiscon.exe (Session Disconnection Utility)...88
RunLegacyCPLElevated.exe (Running Legacy Control Panel Applet in Elevated Mode)..89
dism.exe (Deployment Image Servicing and Management Tool).. 90
chkdsk.exe (Check Disk Utility)..91
UserAccountControlSettings.exe (Configuring UAC Settings)...92
DeviceCensus.exe (Device Information)... 93
MpCmdRun.exe (Microsoft Malware Protection Command Line Utility).............................. 94
MpDefenderCoreService.exe (Antimalware Core Service).. 95
MsSense.exe (Windows Defender Advanced Threat Protection Service Executable)........96
lsass.exe (Local Security Authority Process)...97
Taskmgr.exe (Task Manager).. 98

4

Introduction
Before speaking about a specific process I wanted to talk about an attribute related to all
processes on Windows which is not so well known among all administrators/users/programmers
etc.

I encourage you before reading the next lines to open any process listing app/program that you
like in Windows (tasklist, task manager, process explorer or anything else) and go over PID
numbers of all the processes - What can you learn from those numbers?

You probably saw that all of them are even numbers, what is more interesting is that if you
divide them by two you will still get an even number - thus all the PIDs are divisible by 4!!!!
BTW, the same is true for TIDs (Thread IDs) under Windows. A screenshot from

The reason for that is due to code reuse in the Windows kernel. The PIDs/TIDs are allocated by
the same code which allocates kernel handles. Thus, since kernel handles are divisible by 4 so
are PIDs/TIDs. We can also use the following powershell command to list only the PIDs:
“Get-Process | select ID” - as shown in the screenshot below.

But why are the handles divisible by 4? Because the two bottom bits can be ignored by Windows
and could be used for tagging. You can verify it by going over the comments in ntdef.h
-https://github.com/tpn/winsdk-10/blob/master/Include/10.0.10240.0/shared/ntdef.h#L846. Think
about the pattern for each PID/TID in binary form to fully understand it.

Lastly, you can follow me on twitter - @boutnaru (https://twitter.com/boutnaru). Also, you can
read my other writeups on medium - https://medium.com/@boutnaru. Lastly, You can find my
free eBooks at https://TheLearningJourneyEbooks.com. Lets GO!!!!!!

5

https://github.com/tpn/winsdk-10/blob/master/Include/10.0.10240.0/shared/ntdef.h#L846
https://twitter.com/boutnaru
https://medium.com/@boutnaru
https://thelearningjourneyebooks.com

System Idle Process (PID 0)
The goal of this process is to give the CPU something to execute in case there is nothing else to
do (thus it is called idle ;-). Let's think about the next situation, we have a process using 30% of
CPU, in that case PID 0 (System Idle) will consume the remaining 70%. Also, Idle is the first
process that the kernel starts.

Moreover, there is a kernel thread of System Idle for each vCPU the OS has identified (check out
the screenshot below which shows that. The VM which I have used had 3 vCPUs - also see the
first field in the table showing the “Processor”).

The reason for having an “Idle Process” is to avoid an edge case in which the scheduler
(Windows schedule based on threads) does not have any thread in a “Ready” state to execute
next. By the way, there are also other schedulers IO and Memory, which we will talk about in
one of the next posts/writeups.

When the kernel threads are executed they can also perform different power saving tricks
regarding the CPU. One of them could be halting different components which are not in use until
the next interrupt arrives. The kernel threads can also call functions in the HAL (hardware
abstraction layer, more on that in the future) in order to perform tasks such as reducing the CPU
clock speed. Which optimization is performed is based on the version of Windows, hardware and
the firmware installed.

6

smss.exe (Session Manager Subsystem)
“smss.exe” is the first user-mode process, it is executed from the following location:
%SystemRoot%\System32\smss.exe. It’s part of Windows since Windows NT 3.1 (1993). Thus,
it starts as part of the OS startup phase and performs different tasks such as those we are doing to
detail next (The order of writing is not the order of execution).

Performing delayed renaming/file deletion changes based on configuration in the Registry -
“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\FileRenameOperations” (for now we should know the Registry central repository for
Windows configuration, more on this in the future).

Creation of DOS device mapping based on
“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\DOS
Devices” such as AUX, CON, PIPE and more (a short explanation could be found here -
http://winapi.freetechsecrets.com/win32/WIN32DefineDosDevice.htm).

Loading the subsystems which are configured in the Registry -
“HKLM\System\CurrentControlSet\Control\Session Manager\SubSystems”. At minimum we
have have the kernel part of the Win32 Subsystem (aka win32k.sys) and on session 0, which is
the session in which Windows’ services are executed - smss.exe starts
“csrss.exe” and “wininit.exe” (you can also read about them in the following pages).

Also, on session 1, which is the first user session - smss.exe starts “csrss.exe” and
“winlogon.exe”. Of course, they could be multiple sessions if more users are logged on (locally
or using RDP).

Moreover, both the page files (used for virtual memory) and environment variables
(“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Environment”) are created by “smss.exe”. There are also more actions regarding
memory management, KnownDlls, power management and more that are going to be discussed
in the future. “smss.exe” also takes part when creating a new RDP session, we will detail this
process after taking more in depth about sessions, desktops and windows stations in a future
writeup - so stay tuned.

Anyhow, we should expect only one instance of “smss.exe” running without any children
processes on session 0, with PPID 4 (“System Process”). This “smss.exe” is called the master,it
is responsible for creating at minimum 2 instances of itself for session 0 and 1 (in order to do the
work we detailed above). The other instances of “smss.exe” (the non-master) will terminate after
finishing the session initialization phase of a new session. On the screenshot below we can see

7

http://winapi.freetechsecrets.com/win32/WIN32DefineDosDevice.htm

“wininit.exe” from session 0 and “winlogon.exe” from session 1 both of them having a
non-existent parent.

8

csrss.exe (Client Server Runtime Subsystem)
The goal of “csrss.exe” (Client Server Runtime Subsystem) is to be the user-mode part of the
Win32 subsystem (which is responsible for providing the Windows API). “csrss.exe” is included
in Windows from Windows NT 3.1. It is located at “%windir%\System32\csrss.exe” (which is
most of the time C:\Windows\System32\csrss.exe).

From Windows NT 4.0 most of the Win32 subsystem has been moved to kernel mode - “With
this new release, the Window Manager, GDI, and related graphics device drivers have been
moved to the Windows NT Executive running in kernel mode”1. Thus “csrss.exe” manages today
GUI shutdowns and windows console (today it is “cmd.exe”).

Overall, we can say that today “csrss.exe” handles things like process/threads, VDM (Visual
DOS machine emulation), creating of temp files and more2 . It is executed by “local system” and
there is one instance per user session. Thus, at minimum we will have two (one for session 0 and
on for session 1) - as shown in the screenshot below. “csrss.exe” has a handle for each
process/thread in the specific session it is part of. Also, for each running process a
CSR_PROCESS structure is maintained3, by the way we can leverage this fact for identifying
hidden processes (like by using “psxview”4 from the volatility framework).

“smss.exe” is the process which starts “csrss.exe” together with “winlogon.exe” (more about it in
a future writeup), after finishing “smss.exe” exits. In case you want to read more about
“smss.exe”5. By the way, from Windows 7 (and later) “csrss.exe” executes “conhost.exe” instead
of drawing the console windows by itself (I am going to elaborate about that in the next writeup).

Lastly, “csrss.exe” loads “csrsrv.dll”, “basesrv.dll” and “winsrv.dll” as shown in the screenshot
below. If we want to go over some of the source code of “csrss.exe” we can use the ReactOS
which is a “A free Windows-compatible Operating System”, which is hosted in github.com. The
relevant code of the entire subsystem can be found at
https://github.com/reactos/reactos/tree/master/subsystems/csr. We can also debug “csrss.exe”
using WinDbg, it is important to know that since Windows “csrss.exe” is a protected process so
it can be debugged form kernel mode only6. A list of all the “csrss.exe” API list can be found
here https://j00ru.vexillium.org/csrss_list/api_table.html.

6 https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-csrss
5https://medium.com/@boutnaru/the-windows-process-journey-smss-exe-session-manager-subsystem-bca2cf748d33
4 https://github.com/volatilityfoundation/volatility/wiki/Command-Reference-Mal#psxview

3 https://www.geoffchappell.com/studies/windows/win32/csrsrv/api/process/process.htm

2 https://j00ru.vexillium.org/2010/07/windows-csrss-write-up-the-basics/
1https://learn.microsoft.com/en-us/previous-versions//cc750820(v=technet.10)?redirectedfrom=MSDN#XSLTsection124121120120

9

https://github.com/reactos/reactos/tree/master/subsystems/csr
https://j00ru.vexillium.org/csrss_list/api_table.html
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-csrss
https://medium.com/@boutnaru/the-windows-process-journey-smss-exe-session-manager-subsystem-bca2cf748d33
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference-Mal#psxview
https://www.geoffchappell.com/studies/windows/win32/csrsrv/api/process/process.htm
https://j00ru.vexillium.org/2010/07/windows-csrss-write-up-the-basics/
https://learn.microsoft.com/en-us/previous-versions//cc750820(v=technet.10)?redirectedfrom=MSDN#XSLTsection124121120120

10

wininit.exe (Windows Start-Up Application)
“wininit.exe” is an executable which is responsible for different initialization steps as described
next. The executable is located at “%windir%\System32\wininit.exe” (On 64 bit systems there is
only a 64 bit version with no 32 bit version — in contrast to other executables such as cmd.exe).
It is started by the first “smss.exe” at session 0 under LocalSystem (S-1–5–18). Overall there
should be only one running instance of “wininit.exe”.

Historically, “wininit.exe” was used mainly in order to allow uninstallers to process commands
stored in the “WinInit.ini” file. By doing so it allowed programs to take action while the system
is booting7.

Moreover, “wininit.exe” is responsible for a couple of system initialization steps. Among them
are: creating the %windir%\temp folder, initializing the user-mode scheduling infrastructure,
creating a window station (Winsta0) and two desktops (Winlogon and Default) for processes to
run on in session 0, marking itself critical so that if it exits prematurely and the system is booted
in debugging mode (it will break into the debugger) and waiting forever for system shutdown8.

Also, “wininit.exe” launches “services.exe” (SCM — Service Control Manager) , “lsass.exe”
(Local Security Authority Subsystem) and “fontdrvhost.exe” (Usermode Font Driver Host) — as
seen in the screenshot below. If you want more information about service management I suggest
reading https://medium.com/@boutnaru/windows-services-part-1-5d6c2d25b31c and
https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4. Regarding the last two
(“lsass.exe” and “fontdrvhost.exe”) I am going to write something in the near future.

8 https://learn.microsoft.com/en-us/answers/questions/405417/explanation-of-windows-processes-and-dlls.html

7https://social.technet.microsoft.com/Forums/ie/en-US/df6f5eeb-cbb9-404f-9414-320ea02b4a60/wininitexe-what-is-is-and-why-is-it-con
stantly-running

11

https://medium.com/@boutnaru/windows-services-part-1-5d6c2d25b31c
https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4
https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4
https://learn.microsoft.com/en-us/answers/questions/405417/explanation-of-windows-processes-and-dlls.html
https://social.technet.microsoft.com/Forums/ie/en-US/df6f5eeb-cbb9-404f-9414-320ea02b4a60/wininitexe-what-is-is-and-why-is-it-constantly-running?forum=win10itprosecurity
https://social.technet.microsoft.com/Forums/ie/en-US/df6f5eeb-cbb9-404f-9414-320ea02b4a60/wininitexe-what-is-is-and-why-is-it-constantly-running?forum=win10itprosecurity

winlogon.exe (Windows Logon Application)
“winlogon.exe” is an executable which is located at “%windir%\System32\winlogon.exe“ (On
64 bit systems there is only a 64-bit version with no 32-bit version like with other executables
such as cmd.exe). It is executed under the “NT AUTHORITY\SYSTEM” (S-1-5-18) user.
“Winlogon.exe” provides interactive support for interactive logons9.

Overall, “winlogon.exe” manages user interactions which are related to the security of the
system. Among them are: coordination of the logon flow, handling logout (aka logoff), starting
“LogonUI.exe”10, allowing the alteration of the ussr’s password and locking/unlocking the
server/workstation11. In order to obtain user information for logon “winlogon.exe” uses
credentials providers which are loaded by “LogonUI.exe” - more on them in a future writeup.
For authenticating the user “winlogon.exe” gets help from “lsass.exe”.

In its initialization phase “winlogon.exe” registers the “CTRL+ALT+DEL” secure attention
sequence12 before any application can do that. Also, “winlogon.exe” creates three desktops
within WinSta0: “Winlogon Desktop” (it is the desktop that the user is switched to when SAS is
received), “Application Desktop” (this is the desktop created for the logon session of the user)
and “ScreenSaver Desktop” (this is the desktop used when a screensaver is running). For more
information I suggest reading “Initializing Winlogon”13.

Before any logon is performed to the system, the visible desktop is Winlogon’s. Moreover, the
number of instances that we expect to have is one for each interactive logon session that is
present (as the number of “explorer.exe”) as minimum and in some case another one which is
for the next session that can be created - as seen in the screenshot below.

Lastly, I think it is a good idea to go over the reference implementation in ReactOS for
“winlogon.exe”14.

14 https://github.com/reactos/reactos/tree/2752c42f0b472f2db873308787a8b474c4738393/base/system/winlogon
13 https://learn.microsoft.com/en-us/windows/win32/secauthn/initializing-winlogon
12 https://medium.com/@boutnaru/security-sas-secure-attention-sequence-da8766d859b5
11 https://www.microsoftpressstore.com/articles/article.aspx?p=2228450&seqNum=8
10https://medium.com/@boutnaru/the-windows-process-journey-logonui-exe-windows-logon-user-interface-host-4b5b8b6417cb
9 https://learn.microsoft.com/en-us/windows/win32/secgloss/w-gly

12

https://github.com/reactos/reactos/tree/2752c42f0b472f2db873308787a8b474c4738393/base/system/winlogon
https://learn.microsoft.com/en-us/windows/win32/secauthn/initializing-winlogon
https://medium.com/@boutnaru/security-sas-secure-attention-sequence-da8766d859b5
https://www.microsoftpressstore.com/articles/article.aspx?p=2228450&seqNum=8
https://medium.com/@boutnaru/the-windows-process-journey-logonui-exe-windows-logon-user-interface-host-4b5b8b6417cb
https://learn.microsoft.com/en-us/windows/win32/secgloss/w-gly

userinit.exe (Userinit Logon Application)
“userinit.exe” is an executable which is located executable is located at
“%windir%\System32\userinit.exe“ (On 64 bit systems there is only a 64 bit there is also a 32 bit
version located at “%windir%\SysWOW64\userinit.exe”). It is started by the “winlogon.exe” - as
seen in the screenshot below (taken from ProcMon). Also, “userinit.exe” is executed with the
permissions of the user which is logging in to the system.

Overall, “userinit.exe” is responsible for loading the user’s profile and executing startup
applications while the logon process of the user is being performed. Thus, it will execute logon
scripts15.

“C:\Windows\System32\userinit.exe” is defined by default as the executable for the UserInit
phase under the “userinit” key in the registry16 - as shown in the screenshot below (taken from
“regedit.exe”). Moreover, “userinit.exe” runs the shell of the logged on user, which is by default
“explorer.exe” as configured in the registry under the “shell” key17 - as shown in the screenshot
below (taken from “regedit.exe”).

I think it is a good idea to go over the reference implementation in ReactOS for “userinit.exe”
(https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/syste
m/userinit).

17 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell
16 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\UserInit
15 https://www.minitool.com/news/userinit-exe.html

13

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/system/userinit
https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/system/userinit
https://www.minitool.com/news/userinit-exe.html

dwm.exe (Desktop Window Manager)
“dwm.exe” (Desktop Window Manager) is the executable which handles different tasks in the
display process of the Windows UI like rendering effects. Among those efforts are: live taskbar
thumbnails, Flip3D, transparent windows and more18. The executable is located at
“%windir%\System32\dwm.exe” (On 64 bit systems there is only a 64 bit version with no 32 bit
version like with other executables such as cmd.exe).

Thus, we can think about “dwm.exe” as a “compositing windows manager”. A “windows
manager” is computer software that controls the placement and appearance of a window as part
of a “window system” in a GUI environment19. So, a “compositing windows manager” is a
“window manager” that provides applications with an off-screen buffer for each window. The
goal of the manager is to composite all the windows’ buffers into an image representing the
screen and commit it to the display memory20.

The desktop composition feature was introduced in Windows Vista. It changed the way
applications display pixels on the screen (as it was until Windows XP). When desktop
composition is enabled, individual windows no longer draw directly to the screen (or primary
display device). Their drawings are redirected to off-screen surfaces in video memory, which are
then rendered into a desktop image and presented on the display.

For more information I suggest reading the following links
https://learn.microsoft.com/en-us/windows/win32/dwm/dwm-overview and
https://learn.microsoft.com/en-us/archive/blogs/greg_schechter/under-the-hood-of-the-desktop-w
indow-manager.

Under Windows 10, there is one instance of “dwm.exe” for each session (excluding session 0).
The parent process for each “dwm.exe” is “winlogon.exe”. The user which is associated with the
security token of each “dwm.exe” has a the pattern of “Window
Manager\DWM-{SESSION_ID}” and a SID of pattern “S-1–5–90–0-{SESSION_ID}” as shown
in the screenshot below (taken from Process Explorer).

20 https://en.wikipedia.org/wiki/Compositing_window_manager
19 https://en.wikipedia.org/wiki/Window_manager
18 https://learn.microsoft.com/en-us/windows/win32/dwm/dwm-overview

14

https://learn.microsoft.com/en-us/windows/win32/dwm/dwm-overview
https://learn.microsoft.com/en-us/windows/win32/dwm/dwm-overview
https://learn.microsoft.com/en-us/archive/blogs/greg_schechter/under-the-hood-of-the-desktop-window-manager
https://learn.microsoft.com/en-us/archive/blogs/greg_schechter/under-the-hood-of-the-desktop-window-manager
https://learn.microsoft.com/en-us/archive/blogs/greg_schechter/under-the-hood-of-the-desktop-window-manager
https://en.wikipedia.org/wiki/Compositing_window_manager
https://en.wikipedia.org/wiki/Window_manager
https://learn.microsoft.com/en-us/windows/win32/dwm/dwm-overview

15

LogonUI.exe (Windows Logon User Interface Host)
“LogonUI.exe” (Windows Logon User Interface Host) is responsible for the graphical user
interface which asks the user to logon into the system (aka logon screen/lock screen). The
executable file is located at “%SystemRoot%\System32\LogonUI.exe” (On 64 bit systems there
is only a 64 bit version with no 32 bit version like with other executables such as cmd.exe).

Moreover, “LogonUI.exe” is executed under the Local System user (S-1–5–18) for every session
(excluding session 0). “winlogon.exe” is the process which is responsible for running
“LogonUI.exe” as we can see in the screenshot below, which was taken from Process Monitor21.
Also, if you want to see how “LogonUI.exe” GUI looks in different versions of Windows22.

In the perspective of the data flow between “LogonUI.exe” and “winlogon.exe” the basic phases
are as follows (after “LogonUI.exe” was launched by “winlogon.exe”). “LogonUI.exe” gets
credentials from the user (like username and password) and sends them to “winlogon.exe”.
“winlogon.exe” performs the authentication (since Windows Vista it is done using a credential
provider, before that it was done by msgina.dll). If the authentication process succeeds, it sends a
message back to “LogonUI.exe” to indicate that the user has been authenticated23. We will get
deeper into this flow after talking about “winlogon.exe”, sessions, ALPC (which is the
communication line between the processes) and more.

In addition, settings for LogonUI.exe are stored in the registry in the following branch:
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\
LogonUI”. Among those settings we can find the user list that should be shown, the last user that
logged-on and the background image. Lastly, if you want to see a reference code for
“LogonUI.exe” you can check out ReactOS24.

24 https://github.com/reactos/reactos/tree/3647f6a5eb633b52ef4bf1db6e43fc2b3fc72969/base/system/logonui
23https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/credentials-processes-in-windows-authentication
22 https://media.askvg.com/articles/images3/Windows_Login_Screen.png
21 https://learn.microsoft.com/en-us/sysinternals/downloads/procmon

16

https://github.com/reactos/reactos/tree/3647f6a5eb633b52ef4bf1db6e43fc2b3fc72969/base/system/logonui
https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/credentials-processes-in-windows-authentication
https://media.askvg.com/articles/images3/Windows_Login_Screen.png
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon

explorer.exe (Windows Explorer)
“explorer.exe” is an executable which is the “Windows Explorer”. The executable is located at
“%windir%\explorer.exe (On 64 bit systems there is also a 32 bit version located in
%windir%\SysWOW64\explorer.exe). It is responsible for handling elements of the graphical
user interface in Windows (including the taskbar, start menu, and desktop), the “File Explorer”
and more. Thus, we can think about it as a graphical shell25.

In case we terminate “explorer.exe” the taskbar will disappear and also the desktop both the
shortcuts and the wallpaper itself26. For more understanding about “exeplorer.exe” I think it is a
good idea to go over the reference implementation in ReactOS27.

Every time a user logins interactively “explorer.exe” is executed under the user which logged on
to the system28. The process which starts “explorer.exe” is “userinit.exe” (I will post on it in the
near future) - as can be seen in the screenshot below.

I also suggest going over the following link https://ss64.com/nt/explorer.html to checkout all the
arguments that can be passed to “exeplorer.exe” while launching it. There are also several
examples of usage there. By the way, it seems that Microsoft wants to decouple features from
“explorer.exe” in order to make Windows 11 faster29.

29https://www.windowslatest.com/2022/12/22/microsoft-wants-to-make-windows-11-faster-by-decoupling-features-from-explorer-exe/
28 https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/windows-logon-scenarios
27 https://github.com/reactos/reactos/tree/81db5e1da884f76e6cee66b8cb1c7a2f6ff791eb/base/shell/explorer
26 https://copyprogramming.com/howto/what-happens-if-i-end-the-explorer-exe-process
25 https://www.pcmag.com/encyclopedia/term/explorerexe

17

https://ss64.com/nt/explorer.html
https://www.windowslatest.com/2022/12/22/microsoft-wants-to-make-windows-11-faster-by-decoupling-features-from-explorer-exe/
https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/windows-logon-scenarios
https://github.com/reactos/reactos/tree/81db5e1da884f76e6cee66b8cb1c7a2f6ff791eb/base/shell/explorer
https://copyprogramming.com/howto/what-happens-if-i-end-the-explorer-exe-process
https://www.pcmag.com/encyclopedia/term/explorerexe

svchost.exe (Host Process for Windows Services)
“svchost.exe” is probably the builtin executable which has the most instances (for example 78 on
the my testing VM) among all the running processes in Windows. We can split its name to “Svc”
and “Host”, that is service host which hits its responsibility (more on that later).

The executable “svchost.exe” is located in %windir%\System32\svchost.exe. In case we are
talking about the 64 bit version of Windows, there is also %windir%\SysWOW64\svchost.exe
(which is a 32 bit version). Both of the files are signed digitally by Microsoft. It was introduced
during Windows 2000, even though there was support for “shared service processes” already in
Windows NT 3.1 (more on this in the following paragraphs).

Due to the fact, many of the Windows’ services (you can read on Wndows’ Services on
https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4) are implemented as
DLLs (Dynamic Link Libraries) there is a need for an executable to host them. Thus, you can
think about “svchost.exe” as the implementation of “shared service process” - A process which
hosts/executes/runs multiple services in a single memory address space.

The configuration of services is stored in the registry
(“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services”), for each service which
is hosted the name of the DLL is stored under the “Parameter” subkey in a value named
“ServiceDll”. For example, in the case of the DHCP client is
“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Dhcp\Parameters\ServiceD
ll” - as shown in the screenshot below. The ImagePath (which stores the path to the executable to
run when starting the service) will be “svchost.exe” with a command line parameter of “-k” and
the name of the service groups (like netsvcs, Dcomlaunch, utcsvc, and LocalServiceNoNetwork,
LocalSystemNetworkRestricted).

At the end services are splitted into different groups, every group is hosted by one host process
which is a single instance of “svchost.exe”. If we want to see which services are hosted on which
“svchost.exe” you can use tools like “Process Explorer” and “tasklist” - as you can see in the
screenshot below. The configuration of which services are part of what group we can see at
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost”
(on my test VM a total of 49 groups are defined).

It is important to know that from Windows 10 (version 1903) on systems with more than 3.5GB
or RAM by default there is no grouping. That is, every service will be executed in a single
instance of “svchost.exe” for better security and reliability. Of course there are exceptions for
that30.

30 https://learn.microsoft.com/en-us/windows/application-management/svchost-service-refactoring

18

https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4
https://learn.microsoft.com/en-us/windows/application-management/svchost-service-refactoring

19

ctfmon.exe (CTF Loader)
“ctfmon.exe” is a user-mode process which is executed from the following location
%SystemRoot%\System32\ctfmon.exe. If you are using a 64 bit version of Windows, there is
also a 32 bit version of “ctfmon.exe” located at C:\Windows\SysWOW64\ctfmon.exe. By
parsing the file information we can see that it is described as a “CTF Loader”. CTF stands for
“Collaboration Translation Framework”, it is used by Microsoft Office.

The goal of “ctfmon.exe” is to provide different input capabilities for users such as speech and
handwriting recognition. By the way, it will run even if you are not using Microsoft Office.

“Ctfmon.exe” is launched as a child process of the service TabletInputService ("Touch Keyboard
and Handwriting Panel Service"), which is hosted by “svchost.exe” - as shown in the screenshot
below. Thus, if we want to stop “ctfmon.exe” we can just disable/stop that service. For more
information about what is “svchost.exe” you can read the following link
https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-win
dows-services-b18c65f7073f.

20

https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f
https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f

audiodg.exe (Windows Audio Device Graph
Isolation)
“audiodg.exe” is an executable which is part of the Windows shared-mode audio engine as
described next. The executable is located at “%windir%\System32\audiodg.exe” (On 64 bit
systems there is only a 64 bit version with no 32 bit version — in contrast to other executables
such as cmd.exe). The process is running under the user “NT AUTHORITY\LOCAL
SERVICE”.

In Windows the audio engine runs in user mode. We have the "Windows Audio" service which is
implemented in AudioSrv.dll, it is hosted using the “svchost.exe” process. The service launches a
helper process “audiodg.exe”31. All of that is demonstrated in the screenshot below. It runs in a
different login session from the logged on user (isolated) in order to that content and plug-ins
cannot be modified32.

Thus, we can say that “audiodg.exe” is being utilized for all audio processing33. It hosts the audio
engine for Windows so all the digital signal processing (DSP) is performed by “audiodg.exe”.
Vendors can install their own audio effects which will be processed by “audiodg.exe”34. There
should be one instance only of “audiodg.exe” at a specific time.

34https://answers.microsoft.com/en-us/windows/forum/all/audiodgexe-high-cpu-and-memory/42b3f122-87bf-45cd-8ea7-08abafa9442c
33 https://answers.microsoft.com/en-us/windows/forum/all/windows-10-audiodgexe/af1b70e0-06fe-4952-8205-b6191ccb8882
32 https://answers.microsoft.com/en-us/windows/forum/all/audiodgexe/0c86aef4-81a5-480e-9389-d9652fee1d21
31 https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/audio-measures

21

https://answers.microsoft.com/en-us/windows/forum/all/audiodgexe-high-cpu-and-memory/42b3f122-87bf-45cd-8ea7-08abafa9442c
https://answers.microsoft.com/en-us/windows/forum/all/windows-10-audiodgexe/af1b70e0-06fe-4952-8205-b6191ccb8882
https://answers.microsoft.com/en-us/windows/forum/all/audiodgexe/0c86aef4-81a5-480e-9389-d9652fee1d21
https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/audio-measures

rdpclip.exe (RDP Clipboard Monitor)
“rdpclip.exe” (RDP Clipboard Monitor) is responsible for managing the shared clipboard
between the local computer and the remote desktop which the user is interacting with35. The
executable file is located at “%windir%\System32\rdpclip.exe” (On 64 bit systems there is only a
64 bit version with no 32 bit version like with other executables such as cmd.exe).

By enabling the “Remote Desktop” capability36 on Windows it allows remote management of a
system using a GUI (graphical user interface) by leveraging the Remote Desktop Protocol
(RDP). The default port of the protocol is TCP/3389. For more information about the protocol I
suggest reading the following link
https://www.cyberark.com/resources/threat-research-blog/explain-like-i-m-5-remote-desktop-pro
tocol-rdp.

“rdpclip” is started when a new remote desktop session is created by the service which is called
“Remote Desktop Services” - as shown in the screenshot below. Fun fact, the old display name
of the service was “Terminal Services” which was changed while the service name is still
“TermService”.

Lastly, the description of the service states “it allows users to connect interactively to a remote
computer. Remote Desktop and Remote Desktop Session Host Server depend on this service. To
prevent remote use of this computer, clear the checkboxes on the Remote tab of the System
properties control panel item”.

36https://learn.microsoft.com/en-us/windows-server/remote/remote-desktop-services/clients/remote-desktop-allow-access
35 https://www.winosbite.com/rdpclip-exe/

22

https://www.cyberark.com/resources/threat-research-blog/explain-like-i-m-5-remote-desktop-protocol-rdp
https://www.cyberark.com/resources/threat-research-blog/explain-like-i-m-5-remote-desktop-protocol-rdp
https://learn.microsoft.com/en-us/windows-server/remote/remote-desktop-services/clients/remote-desktop-allow-access
https://www.winosbite.com/rdpclip-exe/

smartscreen.exe (Windows Defender SmartScreen)
“smartscreen.exe” is an executable which is the “Windows Defender SmartScreen”. The
executable is located at “%windir%\System32\smartscreen.exe” (On 64 bit systems there is only
a 64 bit version with no 32 bit version — in contrast to other executables such as cmd.exe).

SmartScreen is a cloud-based anti-phishing/anti-malware component which is included in
different Microsoft products such as: Windows, Internet Explorer and Microsoft Edge
(https://en.wikipedia.org/wiki/Microsoft_SmartScreen).

Microsoft Defender SmartScreen helps with determining whether a site is potentially malicious
and by determining if a downloaded application/installer is potentially malicious. We can sum up
the benefits of SmartScreen as follows: anti-phishing/anti-malware support, reputation-based
URL/application protection, operating system integration, ease of management using group
policy/Microsoft Intune and blocking URLs associated with potentially unwanted applications.
(https://learn.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smarts
creen/microsoft-defender-smartscreen-overview).

In order to demonstrate the working of SmartScreen I have tried to download (using Edge) - you
can see the warning in the left side of the screenshot below. Moreover, after downloading it using
a different browser I have executed the EICAR test file - you can see the result in the left side of
the screenshot below. By the way, the EICAR (European Institute from Computer Antivirus
Research) test file was created to test the response of AV software
(https://en.wikipedia.org/wiki/EICAR_test_file).

Lastly, we can enable/disable SmartScreen using the settings window, bot for the OS/browser
(https://www.digitalcitizen.life/how-disable-or-enable-smartscreen-filter-internet-explorer-or-win
dows-8/).

23

https://en.wikipedia.org/wiki/Microsoft_SmartScreen
https://learn.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview
https://en.wikipedia.org/wiki/EICAR_test_file
https://www.digitalcitizen.life/how-disable-or-enable-smartscreen-filter-internet-explorer-or-windows-8/
https://www.digitalcitizen.life/how-disable-or-enable-smartscreen-filter-internet-explorer-or-windows-8/

ApplicationFrameHost.exe
The “ApplicationFrameHost.exe” executable is located at the following directory -
”%windir%\system32\ApplicationFrameHost.exe”. On 64-bit systems there is only a 64-bit
version with no 32 bit version — in contrast to other executables such as cmd.exe.

Overall, the goal of “ApplicationFrameHost.exe” is to display the frames (windows) of the
applications whether we are in desktop/tablet mode37. By the way, if we kill
“ApplicationFrameHost.exe” all the UWP applications will be closed also - as we can see in the
screenshot below.

There is one instance per session for the “ApplicationFrameHost.exe” in case one or more
“Window Store App” which is also known as “Universal Windows Platform App”38 - I will
elaborate about them in a separate writeup. An example for a UWP app is the Calculator
(“%windir%\system32\calc.exe”). Also, “ApplicationFrameHost.exe” is running with the
permissions of the logged on user (that from whom the session was created).

38 https://www.file.net/process/applicationframehost.exe.html
37 https://www.howtogeek.com/325127/what-is-application-frame-host-and-why-is-it-running-on-my-pc/

24

https://www.file.net/process/applicationframehost.exe.html
https://www.howtogeek.com/325127/what-is-application-frame-host-and-why-is-it-running-on-my-pc/

RuntimeBroker.exe
“RuntimeBroker.exe” is an executable which that is located at
“%windir%\System32\RuntimeBroker.exe” (On 64 bit systems there is only a 64-bit version with
no 32-bit version — in contrast to other executables such as cmd.exe).

“RuntimeBroker.exe” is running the permissions of the user (from whom the session was
created). “RuntimeBroker.exe” is triggered from execution if the Windows Store is opened or
any installed UWP app is started. By the way UWP apps are also known as Windows
App/Windows Store App/Metro App39.

Overall, “RuntimeBroker.exe” is responsible for managing the permissions for “Windows Store
App”. We can think about it as a middleman between the application and operating system
capabilities40.

Thus, when an UWP application tries to access a specific OS resource “RuntimeBroker.exe”
checks if the application has the appropriate permissions for that. In case it does not,
“RuntimeBroker.exe” can ask the user to grant the permissions. We can modify the permissions
for different applications using the “Settings” screen (Privacy->App permissions) - as shown in
the screenshot below.

40https://support.microsoft.com/en-us/windows/runtime-broker-is-using-too-much-memory-ca6ed4e3-2a36-964c-4d2e-8c93980d8a98
39 https://www.file.net/process/runtimebroker.exe.html

25

https://support.microsoft.com/en-us/windows/runtime-broker-is-using-too-much-memory-ca6ed4e3-2a36-964c-4d2e-8c93980d8a98
https://www.file.net/process/runtimebroker.exe.html

logoff.exe (Session Logoff Utility)
“logoff.exe” (Session Logoff Utility) is a command line tool that allows logging off a user from a
session. The session could be the current session in which the command is executed, a specific
session identified by a number or a remote session on a different server41. The executable file is
located at “%windir%\System32\logoff.exe”.

Moreover, an administrator can set a script/executable to be executed when the user is logging
off. This setting can be configured using a local policy/group policy and is called “Logoff script).
Alos, this configuration is part of the “User Configuration -> Windows Settings -> Scripts” - as
shown in the screenshot below42. Lastly, we can also go over a reference code for “logoff.exe”
from ReactOS43.

43 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/logoff

42https://social.technet.microsoft.com/Forums/en-US/f9f011e2-59fc-42d3-a1a4-251536ce8287/i-need-to-automatically-run-an-app-at-log
off?forum=win10itprosetup

41 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/logoff

26

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/logoff
https://social.technet.microsoft.com/Forums/en-US/f9f011e2-59fc-42d3-a1a4-251536ce8287/i-need-to-automatically-run-an-app-at-logoff?forum=win10itprosetup
https://social.technet.microsoft.com/Forums/en-US/f9f011e2-59fc-42d3-a1a4-251536ce8287/i-need-to-automatically-run-an-app-at-logoff?forum=win10itprosetup
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/logoff

cscript.exe (Microsoft ® Console Based Script Host)
“cscript.exe” is the “Microsoft ® Console Based Script Host” which is a command line version
of the “Windows Script Host”. It also allows setting script properties using command line
options44.

Also, “cscript.exe” is a PE binary file located at “%windir%\System32\cscript.exe”. On a 64-bit
system (with a 64-bit OS installed) there is also a 32-bit based version located at
“%windir%\SysWOW64\cscript.exe”.

Overall, the “Windows Script Host” (WSH) is an automation technology that enables scripting
which was first introduced in Windows 95 (after build 950a) and became a standard component
since Windows 98 (build 1111). It has support for different language engines, by default it
supports JScript (*.js/*.jse) and VBScript (*.vbs/*.vbe) out of the box45.

Moreover, users can also install other scripting engines for WSH like Perl and Python . By using
WSH we can also leverage COM (). In VBScript we can do so by calling CreateObject() and in
JSCript we can use an ActivexObject or call WSCript.CreateObject()46.

When using “cscript.exe” to run a script to run in a command-line environment we don’t have to
use administrator permissions. Alos, “cscript.exe” has multiple command line options for
different usages like: interactive mode, debugging mode, passing arguments to the script and
more47. Lastly, in order to demonstrate the usage of “cscript.exe” I have created a simple script
and executed it - as shown in the screenshot below. We can also go over a reference
implementation of “cscript.exe” for RactOS48.

48https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/cscript
47 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/cscript
46 https://learn.microsoft.com/vi-vn/windows/win32/com/using-com-objects-in-windows-script-host
45 https://en.wikipedia.org/wiki/Windows_Script_Host
44https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490887(v=technet.10)?redirectedfrom=MSDN

27

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/cscript
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/cscript
https://learn.microsoft.com/vi-vn/windows/win32/com/using-com-objects-in-windows-script-host
https://en.wikipedia.org/wiki/Windows_Script_Host
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490887(v=technet.10)?redirectedfrom=MSDN

wscript.exe (Microsoft ® Windows Based Script
Host)
“wscript.exe” is the “Microsoft ® Windows Based Script Host” which provides an environment
for executing scripts in a variety of languages49. It also allows setting script properties using
command line options50.

Overall, the “Windows Script Host” (WSH) is an automation technology that enables scripting
which was first introduced in Windows 95 (after build 950a) and became a standard component
since Windows 98 (build 1111). It has support for different language engines, by default it
supports JScript (*.js/*.jse) and VBScript (*.vbs/*.vbe) out of the box51.

Also, “wscript.exe” is a PE binary file located at “%windir%\System32\wscript.exe”. On a
64-bit system (with a 64-bit OS installed) there is also a 32-bit based version located at
“%windir%\SysWOW64\wscript.exe”.

“wscript.exe” allows running the scripts in GUI mode in contrast to “cscript” which is CLI
mode52. Gui mode means that graphical components could be displayed as the script is being
executed - as shown in the screenshot below.

Lastly, in case you want to see a reference implementation of “wscript.exe” I suggest going over
the implementation which is part of ReactOS53.

53https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/wscript
52https://medium.com/@boutnaru/the-windows-process-journey-cscript-exe-microsoft-console-based-script-host-5878ba9354a0
51 https://en.wikipedia.org/wiki/Windows_Script_Host
50 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/wscript
49https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh875526(v=ws.11)

28

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/wscript
https://medium.com/@boutnaru/the-windows-process-journey-cscript-exe-microsoft-console-based-script-host-5878ba9354a0
https://en.wikipedia.org/wiki/Windows_Script_Host
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/wscript
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh875526(v=ws.11)

utilman.exe (Utility Manager)
“utilman.exe” is the “Utility Manager” which is a PE binary file located at
“%windir%\System32\utilman.exe”. On 64-bit systems there is also a 32-bit version located on
“%windir%\SysWOW64\utilman.exe”.

Overall, “utilman.exe” can be started by clicking the icon of “Ease of Access” or by using the
keyboard shortcut “WinKey+U”. When using one of those methods while the computer is
locked, “utilman.exe” is started by “winlogon.exe” with the permissions of the “LocalSystem” -
as shown in the screenshot below. By the way, due to the high level of permissions in use
replacing “utilman.exe” is a common trick in order to reset the administrator password in
Windows54.

Moreover, “utilman.exe” allows accessing the following capabilities: narrator, magnifier,
onscreen keyboard, high contrast, sticky keys and filter keys. Narrator is the screen reading
application made for blind/visually impaired users55. Magnifier is an application that allows users
to enlarge the screen content56.

Also, sticky keys allows users to use modifier keys (like Ctrl, Shift, Alt and WinKey) without the
need of pressing them constantly57.. Filter keys is a feature that adjusts the keyboard response
and ignores repeated keystrokes caused by inaccurate or slow finger movements58.

Lastly, in case you want to see a reference implementation of “osk.exe” I suggest going over the
implementation which is part of ReactOS59.

59 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/utilman
58 https://helpdeskgeek.com/how-to/what-are-filter-keys-and-how-to-turn-them-off-in-windows/
57 https://geekflare.com/using-sticky-keys-in-windows/

56https://support.microsoft.com/en-us/windows/use-magnifier-to-make-things-on-the-screen-easier-to-see-414948ba-8b1c-d3bd-8
615-0e5e32204198

55https://support.microsoft.com/en-us/windows/complete-guide-to-narrator-e4397a0d-ef4f-b386-d8ae-c172f109bdb1
54 https://learn.microsoft.com/en-us/answers/questions/187973/windows-recovery-cmd

29

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/utilman
https://helpdeskgeek.com/how-to/what-are-filter-keys-and-how-to-turn-them-off-in-windows/
https://geekflare.com/using-sticky-keys-in-windows/
https://support.microsoft.com/en-us/windows/use-magnifier-to-make-things-on-the-screen-easier-to-see-414948ba-8b1c-d3bd-8615-0e5e32204198
https://support.microsoft.com/en-us/windows/use-magnifier-to-make-things-on-the-screen-easier-to-see-414948ba-8b1c-d3bd-8615-0e5e32204198
https://support.microsoft.com/en-us/windows/complete-guide-to-narrator-e4397a0d-ef4f-b386-d8ae-c172f109bdb1
https://learn.microsoft.com/en-us/answers/questions/187973/windows-recovery-cmd

osk.exe (Accessibility On-Screen Keyboard)
“osk.exe” is the “Accessibility On-Screen Keyboard” which presents a virtual keyboard layout
inside a resizable window - as shown in the screenshot below. The virtual keyboards enable the
user clicking/hovering/scanning using a mouse/joystick in order to select/activate keys60.

Moreover, “osk.exe” has a 101/102/106 key layout. “osk.exe” is a PE binary located at
“%windir%\System32\osk.exe”. It is bundled with Windows and can provide some features for
users with limited mobility61.

Thus, we don’t need a touch screen in order to interact with “osk.exe”62. By the way, “osk.exe” is
not the only virtual keyboard available as part of Windows, there is also “TabTip.exe” - but more
on there is a separate writeup.

Lastly, in case you want to see a reference implementation of “osk.exe” I suggest going over the
implementation which is part of ReactOS63.

63 https://github.com/reactos/reactos/tree/47f3a4e144b897da0e0e8cb08c2909645061dec9/base/applications/osk
62https://support.microsoft.com/en-us/windows/use-the-on-screen-keyboard-osk-to-type-ecbb5e08-5b4e-d8c8-f794-81dbf896267a
61 https://www.processlibrary.com/en/directory/files/osk/21965/
60 https://www.file.net/process/osk.exe.html

30

https://github.com/reactos/reactos/tree/47f3a4e144b897da0e0e8cb08c2909645061dec9/base/applications/osk
https://support.microsoft.com/en-us/windows/use-the-on-screen-keyboard-osk-to-type-ecbb5e08-5b4e-d8c8-f794-81dbf896267a
https://www.processlibrary.com/en/directory/files/osk/21965/
https://www.file.net/process/osk.exe.html

alg.exe (Application Layer Gateway Service)
“alg.exe” is the “Application Layer Gateway Service” (ALG) which is configured as a Windows
service. Based on the description of the service it provides support for 3rd party protocol plug-ins
for Internet Connection Sharing (ICS). The service is executed with the permission of the
“LocalService” user. “alg.exe” is a PE binary which is stored in the following location:
“%windir%\System32\alg.exe”.

Generally, an “Application Layer Gateway” (ALG) allows a gateway to parse payloads and take
actions such as allow/drop/other based on the data contained in the payloads64. Thus, ALG’s
plugins can modify data in packets, think about things like IP addresses and port numbers65.

Lastly, “alg.exe” is started by “services.exe” with the permission of “NT AUTHORITY\LOCAL
SERVICE” user. There should be at most only one instance of “alg.exe”. “alg.exe” parses
information about supported plugins from “HKLM\SOFTWARE\Microsoft\ALG\ISV”66. We can
see in the screenshot below that there is a handle to that registry location.

66 https://www.sigma-uk.net/tech/windows_ftp_alg_iis
65 https://en.wikipedia.org/wiki/Application-level_gateway
64 https://www.juniper.net/documentation/us/en/software/junos/alg/alg.pdf

31

https://www.sigma-uk.net/tech/windows_ftp_alg_iis
https://en.wikipedia.org/wiki/Application-level_gateway
https://www.juniper.net/documentation/us/en/software/junos/alg/alg.pdf

DrvInst.exe (Driver Installation Module)
“DrvInst.exe” is a PE executable located at “%windir%\System32\drvinst.exe”, it is known as
“Driver Installation Module”. Since Windows Vista when PnP (Plug and Play) manager detects a
new device “DrvInst.exe” is started. It is used for searching and installing the relevant driver for
the new device detected67.

“DrvInst.exe” can also be used for installing drivers while installing a software package. Let us
take for example the installation of “OpenVPN Connect”68.

Thus, as with most VPN (Virtual Private Network) solutions there is a need to install a TAP
driver, which is a virtual network device69. This causes “services.exe” to launch a new process
using the following arguments “C:\Windows\system32\svchost.exe -k DcomLaunch -p -s
DeviceInstall”, which is part of the “DCOM Server Process Launcher”. It is executed with the
permission of the “LocalSystem” user.

Moreover, by passing as an argument “DeviceInstall” “svchost.exe” loads
“%windir%\System32\umpnpmgr.dll”, which is the “User-mode Plug-and-Play Service”. This
instance of “svchost.exe” is the one that starts “DrvInst.exe”. It also loads
“%windir%\System32\devrtl.dll” (Device Management Run Time Library) - as shown in the
screenshot below.

69 https://www.techradar.com/vpn/what-is-a-tap-adapter
68 https://openvpn.net/client/
67https://learn.microsoft.com/en-us/windows-hardware/drivers/install/debugging-device-installations-with-a-user-mode-debugger

32

https://www.techradar.com/vpn/what-is-a-tap-adapter
https://openvpn.net/client/
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/debugging-device-installations-with-a-user-mode-debugger

runas.exe (Run As Utility)
“runas.exe” is an executable aka “Run As Utility”, which is located at
“%windir%\System32\runsas.exe”. On 64 bit systems there there is also a 32-bit version  located
at “%windir%\SysWow64\runas.exe”.

Overall, “runas.exe” allows a user to execute specific programs/tools with different permissions
than the logged-on user. “runas.exe” also has multiple parameters that can be used like passing
credentials from a smartcard instead of a password, loading the user’s profile and more70.

Moreover, “runas.exe” is dependent on the “Secondary Logon” service. The description of the
service states that it “enables starting processes under alternate credentials. If this service is
stopped, this type of logon access will be unavailable. If this service is disabled, any services that
explicitly depend on it will fail to start”. As described if the service is disabled “runas.exe” will
fail - as shown in the screenshot below.

Thus, in case the “Secondary Logon” service can be started it is done with the following
command line: “%windir%\system32\svchost.exe -k netsvcs -p -s seclogon” with the
permissions of the “Local System” user. Also, in this case “svchost.exe” will load
“%windir%\System32\seclogon.dll” (Secondary Logon Service DLL).

70https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc771525(v=ws.11)

33

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc771525(v=ws.11)

cmd.exe (Windows Command Processor)
“cmd.exe” is the “Windows Command Processor” which is the default CLI (command line
interface/interpreter) of Windows (and also reactOS). By the way, it is also known as “Command
Prompt”. It is the replacement of “command.com” which was relevant from MS-DOS to
Windows XP. In Windows NT/Windows 2000 and Windows XP there was both “cmd.exe” and
“command.com”71.

The executable is located at “%windir%\System32\cmd.exe”. On 64-bit systems there is also a
32-bit version located at “%windir%\SysWOW64\cmd.exe”. Also, “cmd.exe” allows the
execution of any script/executable installed on the system or one of the internal command which
included as part of “cmd.exe” like: “cd”, “copy” and “md”72.

Moreover, “cmd.exe” supports executing batch scripts - as shown in the screenshot below. I
suggest going through “Windows Batch Scripting” for more information73.

Lastly, for a reference of “cmd.exe” I suggest going over the implementation of “cmd.exe” as
part of ReacOS74.

74 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/shell/cmd
73 https://en.wikibooks.org/wiki/Windows_Batch_Scripting
72 https://wishmesh.com/2014/09/ms-dos-cmd-exe-command-prompt-cd-md-copy/
71 https://www.computerhope.com/cmd.htm

34

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/shell/cmd
https://en.wikibooks.org/wiki/Windows_Batch_Scripting
https://wishmesh.com/2014/09/ms-dos-cmd-exe-command-prompt-cd-md-copy/
https://www.computerhope.com/cmd.htm

conhost.exe (Console Window Host)
“conhost.exe” is an executable aka the “Console Window Host”, which is located at
“%windir%\System32\conhost.exe”. The goal of “conhost.exe” is to provide an interface
between “cmd.exe”75 and “explorer.exe”76.

Thus, “conhost.exe” is both the server application (for Windows Console API) and also the
classic Windows user interface for working with CLI (command line interface) application.
Historically, those were the job of “csrss.exe”77 but they were extracted for isolation and security
reasons78.

Moreover, one of the duties of “conhost.exe” is to provide the ability to “drag and drop”
folders/files into “cmd.exe”. By the way, every 3rd party application can use “conhost.exe”79.
When “conhost.exe” is started with the permissions of the user which “cmd.exe” was started
with.

Lastly, we can have multiple instances of “conhost.exe”. For each instance of “cmd.exe” (which
is not a descendant of another “cmd.exe”) there will be an instance of “conhost.exe”. Also, in
case of a 64-bit system even if a 32-bit “cmd.exe” an instance of a 64-bit “conhost.exe” is going
to be started. A demonstration of those points is shown in the screenshot below (taken using
“Process Explorer”).

79 https://www.lifewire.com/conhost-exe-4158039
78 https://learn.microsoft.com/en-us/windows/console/definitions
77 https://medium.com/@boutnaru/the-windows-process-journey-csrss-exe-client-server-runtime-subsystem-cb5fa34c47db
76 https://medium.com/@boutnaru/the-windows-process-journey-explorer-exe-windows-explorer-9a96bc79e183
75 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

35

https://www.lifewire.com/conhost-exe-4158039
https://learn.microsoft.com/en-us/windows/console/definitions
https://medium.com/@boutnaru/the-windows-process-journey-csrss-exe-client-server-runtime-subsystem-cb5fa34c47db
https://medium.com/@boutnaru/the-windows-process-journey-explorer-exe-windows-explorer-9a96bc79e183
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

tasklist.exe (Lists the Current Running Tasks)
“tasklist.exe” is an executable which is located at “%windir%\System32\tasklist.exe”. It allows
displaying the list of currently running processes on the system80. On 64-bit systems there is also
a 32-bit version located at “%windir%\SysWOW64\tasklist.exe”.

Moreover, a user with sufficient permissions can also list the processes of a remote system using
“tasklist.exe” by using the “/s” command line switch. For more information about the other
switches which are available please refer to https://ss64.com/nt/tasklist.html.

Overall, a user can display the following attributes for each displayed process: image name, pid,
session number, session name, cpu time, memory usage, user name, service name (if relevant),
window title (if relevant) and more.

Lastly, for a reference of “cmd.exe” I suggest going over the implementation of “cmd.exe” as
part of ReacOS81.

81 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/tasklist
80 https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc730909(v=ws.11)

36

https://ss64.com/nt/tasklist.html
https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/tasklist
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc730909(v=ws.11)

rundll32.exe (Windows Host Process)
“rundll32.exe” is an executable aka the “Windows Host Process” (based on the description field
of the PE file), which is located at “%windir%\System32\rundll32.exe”. On a 64 bit-system the
file still has the same name (including the number 32) and a 32-bit version is located at
“%windir%\SysWOW64\rundll32.exe”.

Overall, the goal of “rundll32.exe” is to load a DLLs (Dynamic Link Libraries) and run a
functionality stored in those files82. The DLLs are loaded using “LoadLibraryExW”83.
“rundll32.exe” is digitally signed by Microsoft and shipped by default with the operating system.
By the way, there are also places that say “rundll32.exe” means “Run a DLL as an App”84.

The way is which we can call a function from a “*.dll” file is by passing the name of the file and
the name of the function. We can also pass arguments to a function while using “rundll32.exe”85.
An example of using “rundll32.exe” is shown in the screenshot below. Also, for more examples
of using “rundll32.exe” I suggest going over the following link
https://www.thewindowsclub.com/rundll32-shortcut-commands-windows. Lastly, for an
implementation reference of “rundll32.exe” I suggest going over the one in ReacOS86.

86 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/system/rundll32
85 https://stmxcsr.com/micro/rundll-parse-args.html
84 https://www.file.net/process/rundll32.exe.html
83 https://www.cybereason.com/blog/rundll32-the-infamous-proxy-for-executing-malicious-code
82 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/rundll32

37

https://www.thewindowsclub.com/rundll32-shortcut-commands-windows
https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/system/rundll32
https://stmxcsr.com/micro/rundll-parse-args.html
https://www.file.net/process/rundll32.exe.html
https://www.cybereason.com/blog/rundll32-the-infamous-proxy-for-executing-malicious-code
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/rundll32

net.exe (Network Command)
“net.exe” is the “Net Command” which is a command line that allows managing different aspects
of the operating system such as: users, groups, services and network connections87. Also,
“net.exe” is a PE binary file located at “%windir%\System32\net.exe” which is signed by
Microsoft. On 64-bit based versions of Windows there is also a 32-bit version of the binary
located at “%windir%\SysWOW64\net.exe.

Overall, they are 19 sub commands in net: “accounts”, “computer”, “config”, “continue”, “file”,
“group”, “help”, “helpmsg”, localgroup”, “pause”, “session”, “share”, “start”, “statistics”,
“stop”, “time”, “use”, “user” and “view”. By using “net help” we can get an explanation about
each sub command. In the table below I have gathered a short description for each sub command
(excluding “net help”). Lastly, we can also go over a reference implementation of “net.exe” from
ReacOS88.

88 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/network/net
87 https://attack.mitre.org/software/S0039/

38

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/network/net
https://attack.mitre.org/software/S0039/

net1.exe (Net Command for the 21st Century)
“net1.exe” is known as the “Net Command for the 21st Century”89. It is a PE binary file that is
signed by Microsoft, which is located at “%windir%\system32\net1.exe”. On 64-bit versions of
Windows there is also a 32-bit version of the file located at “%windir%\SysWOW64\net1.exe”.

Overall, the “net1.exe” was created as a temporary fix for the Y2K problem that affected
“net.exe”90. There was an issue while using the command “net user [USERNAME] /times”
which is responsible for configuring the logon hours of the user91.

Thus, “net1.exe” is executed for specific functionality when “net.exe” is run92. For example
when calling “net time” an instance of “net1.exe” is started by “net.exe” using the command
“net1 time” - as seen in the screenshot below.

Lastly, “net1.exe” supports every command the “net.exe” supports. The issue with “net.exe” was
corrected in Windows XP, however “net1.exe” is still available today for backward
compatibility with old scripts that might use it93.

93 https://ss64.com/nt/net.html
92 https://attack.mitre.org/software/S0039/
91 https://web.archive.org/web/20140830150320/http://support.microsoft.com/kb/240195
90 https://www.lifewire.com/net-command-2618094
89 https://www.file.net/process/net1.exe.html

39

https://ss64.com/nt/net.html
https://attack.mitre.org/software/S0039/
https://web.archive.org/web/20140830150320/http://support.microsoft.com/kb/240195
https://www.lifewire.com/net-command-2618094
https://www.file.net/process/net1.exe.html

TabTip.exe (Touch Keyboard and Handwriting Panel)
“TabTip.exe” (Touch Keyboard and Handwriting Panel) is also known as “Tablet Text Input
Panel”. It is an interface developed by Microsoft which allows inputting text in different ways:
handwriting to text, speech to text and by clicking on the screen like a keyboard94.

The usage of “TabTip.exe” as a keyboard is very similar to “osk.exe”95. The main goal of
“TabTip.exe” is to provide handwriting input. This means that even applications that don’t have
this capability can use “TabTip.exe” to provide users with the ability of writing instead of
typing96 - as shown in the screenshot below.

Overall, “TabTip.exe” is a 64-bit PE binary located at “%ProgramFiles%\Common
Files\microsoft shared\ink\TabTip.exe”, which is digitally signed by Microsoft. When
“TabTip.exe” is launched it is started as a child process of the service TabletInputService (Touch
Keyboard and Handwriting Panel Service), similar to “ctfmon.exe”97 - as shown in the
screenshot below. This service is hosted by “svchost.exe”98, which loads the
“%windir%\System32\TabSvc.dll”.

98https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18
c65f7073f

97 https://medium.com/@boutnaru/the-windows-process-journey-ctfmon-exe-ctf-loader-148f10f5401
96 https://windowsreport.com/tabtip-exe/

95https://medium.com/@boutnaru/the-windows-process-journey-osk-exe-accessibility-on-screen-keyboard-7282369
5321e

94 https://www.file.net/process/tabtip.exe.html

40

https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f
https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f
https://medium.com/@boutnaru/the-windows-process-journey-ctfmon-exe-ctf-loader-148f10f5401
https://windowsreport.com/tabtip-exe/
https://medium.com/@boutnaru/the-windows-process-journey-osk-exe-accessibility-on-screen-keyboard-72823695321e
https://medium.com/@boutnaru/the-windows-process-journey-osk-exe-accessibility-on-screen-keyboard-72823695321e
https://www.file.net/process/tabtip.exe.html

fontdrvhost.exe (Usermode Font Driver Host)
On Windows 8.1 (and previous versions) the parsing of fonts takes place in a kernel driver
(atmfd.dll, yes they are Dlls which are executed in kernel mode). This was accessible via
graphical syscalls exported by win32k.sys, thus it created an attack surface that could lead to
privilege escalation. Thus, from Windows 10 the parsing code was moved to the restricted
user-mode process “fontdrvhost.exe”99

Overall, “fontdrvhost.exe” is an executable which is located at
“%windir%\System32\fontdrvhost.exe“ (On 64-bit systems there is also a 32-bit located at
“%windir%\SysWOW64\fontdrvhost.exe”). It is executed with the permissions of a user in the
following pattern: “Font Driver Host\UMFD[SessionID]”. Also, the SID of the user is in the
pattern of “S-1-5-96-[SessionID]” - as you can see in the screenshot below. Also,
“fontdrvhost.exe” is a PE binary that is digitally signed by Microsoft.

Moreover, on session 0 “fontdrvhost.exe” is started by “wininit.exe”100, in the following sessions
(1, 2 , etc) it is started by “winlogon.exe”101. Thus, the number of instances of “fontdrvhost.exe”
should be as the number of opened sessions on the Windows system.

Lastly, UMDF stands for “User Mode Driver Framework”, which allows running driver in host
processes102.

102https://learn.microsoft.com/en-us/windows-hardware/drivers/wdf/user-mode-driver-framework-frequently-asked-q
uestions

101https://medium.com/@boutnaru/the-windows-process-journey-winlogon-exe-windows-logon-application-88a1d4d
3e13c

100https://medium.com/@boutnaru/the-windows-process-journey-wininit-exe-windows-start-up-application-5581bfe
6a01e

99 https://googleprojectzero.blogspot.com/2021/01/in-wild-series-windows-exploits.html

41

https://learn.microsoft.com/en-us/windows-hardware/drivers/wdf/user-mode-driver-framework-frequently-asked-questions
https://learn.microsoft.com/en-us/windows-hardware/drivers/wdf/user-mode-driver-framework-frequently-asked-questions
https://medium.com/@boutnaru/the-windows-process-journey-winlogon-exe-windows-logon-application-88a1d4d3e13c
https://medium.com/@boutnaru/the-windows-process-journey-winlogon-exe-windows-logon-application-88a1d4d3e13c
https://medium.com/@boutnaru/the-windows-process-journey-wininit-exe-windows-start-up-application-5581bfe6a01e
https://medium.com/@boutnaru/the-windows-process-journey-wininit-exe-windows-start-up-application-5581bfe6a01e
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-windows-exploits.html

OpenWith.exe (Pick an App)
“OpenWith.exe” is also known as the “Pick an App”, it is located at
“%windir%\System32\OpenWith.exe” and it is digitally signed by Microsoft. On 64-bit systems
there is also a 32-bit version located at “%windir%\SysWOW64\OpenWith.exe”.

Overall, “OpenWith.exe” is used for selecting the application we want to open a file with a
specific extension - as shown in the screenshot below. You might expect that “exlorer.exe” is
going to start “OpenWith.exe”, however it is done by the “DCOM Server Process Launcher”
service which is hosted by “svchost.exe”103 - as shown in the screenshot below.

Moreover, due to the reason the hosting “svchost.exe” is running with the permissions of the
“LocalSystem” the creation of the “OpenWith.exe” process is done using the API
“CreateProcessWithUserW”104. It allows “svchost.exe” to execute “OpenWith.exe” with the
permissions of the logged on user (the same access token as “explorer.exe”).

At the end, when we select an app the next time a double click is identified “explorer.exe”105 is
going to start an instance of the application associated with the extension and pass as an
argument the full path of the app.

Thus, if we associate “%windir%\system32\notepad.exe” with “*.troll” a double click on
“troller.troll” leads to the following command line to be executed:
“"C:\Windows\system32\NOTEPAD.EXE" C:\Users\[USERNAME]\Desktop\troller.trl”.

105https://medium.com/@boutnaru/the-windows-process-journey-explorer-exe-windows-explorer-9a96bc79e183
104https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessasuserw
103https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f

42

https://medium.com/@boutnaru/the-windows-process-journey-explorer-exe-windows-explorer-9a96bc79e183
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessasuserw
https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f

mavinject.exe (Microsoft Application Virtualization
Injector)
“mavinject.exe” is the “Microsoft Application Virtualization Injector” which is part of App-V
(Microsoft Application Virtualization). App-V allows the delivering of applications to users as
“virtual applications”. This means that “virtual applications” are installed on a central managed
server. They are “streamed” to users as a service as they are needed. From the user’s perspective
it acts as an installed application locally106.

Overall, “mavinject.exe” is a PE binary located at “%windir%\System32\mavinject.exe”, which
is digitally signed by Microsoft. In case of a 64-bit system there is also a 32-bit version located at
“%windir%\SysWOW64\mavinject.exe”.

Moreover, using “mavinject.exe” we can perform DLL injection, meaning loading a DLL in the
address space of a different process. In order to do so we need to run “mavinject.exe” with
different arguments like: “mavinject.exe [PID] /INJECTRUNNING
[PATH_TO_DLL_TO_LOAD]” - as shown in the screenshot below.

Also, there are other arguments that can be used “/HMODULE” which allows import descriptor
injection. We can use it in the following manner: “mavinject.exe PID
/HMODULE=BASE_ADDRESS PATH_DLL ORDINAL_NUMBER”107.

Lastly, “mavinject.exe” uses the following Win32 API calls: VirtualProtectEx,
CreateRemoteThread, VirtualAllocEx, OpenProcess, LoadLibraryW and
WriteProcessMemory108.

108 https://posts.specterops.io/mavinject-exe-functionality-deconstructed-c29ab2cf5c0e
107 https://unprotect.it/technique/system-binary-proxy-execution-mavinject/
106 https://learn.microsoft.com/en-us/windows/application-management/app-v/appv-about-appv

43

https://posts.specterops.io/mavinject-exe-functionality-deconstructed-c29ab2cf5c0e
https://unprotect.it/technique/system-binary-proxy-execution-mavinject/
https://learn.microsoft.com/en-us/windows/application-management/app-v/appv-about-appv

where.exe (Lists location of Files)
“where.exe” (List Location of Files) is responsible for displaying the location of files which
match a specific search pattern. The search is done in the current directory and in the path which
are declared as part of the “PATH” environment variable109. It is equivalent to the “which”
command under Linux110.

Overall, “where.exe” is a PE binary file located at “%windir%\System32\where.exe”. On 64-bit
systems there is also a 32-bit version located at “%windir%\SysWOW64\where.exe”. Also, the
file is digitally signed by Microsoft.

Moreover, we can use “where.exe” to search in subdirectories from a specific location using the
“/r” switch. We can also perform the search remotely by specifying a UNC path111 - as shown in
the screenshot below.

111 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/where
110 https://linux.die.net/man/1/which
109 https://ss64.com/nt/where.html

44

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/where
https://linux.die.net/man/1/which
https://ss64.com/nt/where.html

NisSrv.exe (Microsoft Network Realtime Inspection
Service)
“NisSrv.exe” is a PE binary which is the main executable that is started by the “WdNisSvc”
service aka “Microsoft Network Realtime Inspection”. It is executed by “services.exe” with the
permissions of the “NT AUTHORITY\LOCAL SERVICE” user (S-1-5-19). The description of
the service states it helps in guarding against intrusion attempts targeting known/newly
discovered vulnerabilities in network protocols.

Overall, “NisSrv.exe” monitors and inspects network traffic in real-time. By doing that it
searches for suspicious behavior that might suggest an exploit targeting the network protocol is
being executed112.

Moreover, “NisSrv.exe” is part of the “Windows Defender” platform, which is Microsoft’s
endpoint security platform. “Windows Defender” provides attack surface reduction and next
generation protection for both OS level and network based113.

Lastly, “NisSrv.exe'' is a PE binary file located at "%ProgramData%\Microsoft\Windows
Defender\Platform\[VERSION]\NisSrv.exe". It is also signed digitally by Microsoft the same
way as the main process of “Windows Defender” (MsMpEng.exe), with a signed level of
Antimalware (PsProtectedSignerAntimalware-Light) - as shown in the screenshot below.

113https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint?view=o
365-worldwide

112https://www.howtogeek.com/357184/what-is-microsoft-network-realtime-inspection-service-nissrv.exe-and-why-i
s-it-running-on-my-pc/

45

https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint?view=o365-worldwide
https://www.howtogeek.com/357184/what-is-microsoft-network-realtime-inspection-service-nissrv.exe-and-why-is-it-running-on-my-pc/
https://www.howtogeek.com/357184/what-is-microsoft-network-realtime-inspection-service-nissrv.exe-and-why-is-it-running-on-my-pc/

Hostname.exe (Hostname APP)
“hostname.exe” is an executable located at “%windir%\System32\HOSTNAME.EXE”. On a
64-bit system there is also a 32-bit version located at
“%windir%\SysWOW64\HOSTNAME.EXE”. The executable is digitally signed by Microsoft.

Overall, “hostname.exe” is responsible for displaying the host name portion of the full computer
name. By the way, printing the environment variable %COMPUTERNAME% will output the
same result as “hostname.exe”114. By the way, “hostname.exe” uses the Win32 API in order to
retrieve the information, based on ReactOS115 the function is “GetComputerNameExW”116.

Moreover, for cases in which we have a cluster of compute nodes that have a distinct name we
can set the environment variable “_CLUSTER_NETWORK_NAME_” which will change the data
returned by Win32 API function117. Thus, the data returned by “hostname.exe” will also change
as shown in the screenshot below.

Lastly, for an implementation reference of “hostname.exe” I suggest going over the one in
ReacOS118.

118https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/h
ostname

117 https://jeffpar.github.io/kbarchive/kb/198/Q198893/
116 https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getcomputernameexw

115https://github.com/reactos/reactos/blob/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/h
ostname/hostname.c#L36

114 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/hostname

46

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/hostname
https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/hostname
https://jeffpar.github.io/kbarchive/kb/198/Q198893/
https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getcomputernameexw
https://github.com/reactos/reactos/blob/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/hostname/hostname.c#L36
https://github.com/reactos/reactos/blob/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/hostname/hostname.c#L36
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/hostname

mmc.exe (Microsoft Management Console)
“mmc.exe” is the “Microsoft Management Console” which is responsible for
creating/saving/opening consoles (aka administrative tools). They are used in order to manage
software/hardware/network components as part of a given system which runs Windows. We can
also create our own custom console and distribute it. Those consoles can include different
snap-ins, which is a management tool hosted by “mmc.exe”119.

Moreover, snap-ins/custom console are distributed as part of “*.msc” file, which are as of today
are XML files that are parsed “mmc.exe” is order to load the specific snap-ins120. Even a clean
installation of Windows comes with a couple of builtin “*.msc” file like: “services.msc” (for
managing services), “WF.msc” (for managing the “Windows Defender Firewall'') and
“fsmgmt.msc” (for managing shared folders). You can find them (and more) in the following
location: “%windir%\system32\” (of course we can also save them to other locations).

At the end, a snap-in leads to a specific “*.dll” which is loaded by “mmc.exe” (“*.msc” can
include a reference for a couple of snap-ins). The relevant configuration is stored in the registry
under “HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MMC\SnapIns”121. The snap-ins
are identified using a “CLSID” (as other COM objects) - as seen in the screenshot below. Fun
fact about “*.msc” files contain data of the icon we want to be displayed when the file is shown
by “explorer.exe”122 or when “mmc.exe” is executed (as the app icon).

Also, one of the differences between MMC and other management consoles in Windows (like
“Control Panel”) is the fact we can also manage remote systems (we have to authenticate for
that) - as shown in the screenshot below (on the right side). Lastly, a reference implementation of
“mmc.exe” is included as part of ReactOS123.

123 https://github.com/reactos/reactos/tree/master/base/applications/mmc
122 https://medium.com/@boutnaru/the-windows-process-journey-explorer-exe-windows-explorer-9a96bc79e183
121 https://www.groovypost.com/tips/mmc-exe-windows-process-safe-virus/
120 http://file.fyicenter.com/143_Windows_.MSC_File_Extension_for_Microsoft_Management_Conso.html

119https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microso
ft-management-console

47

https://github.com/reactos/reactos/tree/master/base/applications/mmc
https://medium.com/@boutnaru/the-windows-process-journey-explorer-exe-windows-explorer-9a96bc79e183
https://www.groovypost.com/tips/mmc-exe-windows-process-safe-virus/
http://file.fyicenter.com/143_Windows_.MSC_File_Extension_for_Microsoft_Management_Conso.html
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console

msg.exe (Message Utility)
“msg.exe” is the “Message Utility” which is a command line which allows sending a message to
a user. It is a PE binary located at “%windir%\System32\msg.exe” which is signed by Microsoft.
On a 64-bit system there is no 32-bit version of this file (in the SysWOW64 directory).

Overall, we can send a message by specifying a username (using * causes the message to arrive
to all users), a session id and even send a message to a remote machine, it is mainly used for
sending Terminal Services/Citrix shutdown messages. Also, we can define a delay for waiting
for the receiver to acknowledge the message. The executable is not included in ‘Home’ editions
of Windows124.

Moreover, historically this functionality was part of the “Messenger Service” until Windows
Vista/2008. It was also operated by using the “net send” command125. Lastly, the sending of the
message is done using RPC (“msg.exe” loads the RPC runtime DLL) and even MS-RPC over
SMB in case of sending the message to a remote126 . We can see an example of using “msg.exe”
in the screenshot shown below.

126https://sid-500.com/2017/10/07/active-directory-send-messages-to-all-currently-logged-on-users-msg-exe/comme
nt-page-1/

125 https://www.lifewire.com/net-send-2618095
124 https://ss64.com/nt/msg.html

48

https://sid-500.com/2017/10/07/active-directory-send-messages-to-all-currently-logged-on-users-msg-exe/comment-page-1/
https://sid-500.com/2017/10/07/active-directory-send-messages-to-all-currently-logged-on-users-msg-exe/comment-page-1/
https://www.lifewire.com/net-send-2618095
https://ss64.com/nt/msg.html

Magnify.exe (Microsoft Screen Magnifier)
“Magnify.exe” is the “Microsoft Screen Magnifier” which makes part of the screen bigger in
order to see images/text better. “Magnify.exe” has several options like: customizing the zoom
level, smoothing the edges of images/text, inverting colors, reading text and more127

Overall, “Magnify.exe” is a PE binary located at “%windir%\System32\Magnify.exe” which is
signed by Microsoft. Also, on a 64-bit system there is also a 32-bit version located at
“%windir%\SysWOW64\Magnify.exe”. Also, the file is signed by Microsoft.

Lastly, although there is no help displayed by “Magnify.exe” when running it from the command
line it still has a couple of switches that can be used. Examples are “/lens” (as shown in the
screenshot below) which defaults to lens view and “/docked” which defaults to “dock view”128.

128https://answers.microsoft.com/en-us/windows/forum/all/magnifyexe-zoom-in-from-cmd-command-prompt/48c72
57b-c1f8-483c-a0b8-fff24daf1622

127https://support.microsoft.com/en-us/windows/use-magnifier-to-make-things-on-the-screen-easier-to-see-414948ba
-8b1c-d3bd-8615-0e5e32204198

49

https://answers.microsoft.com/en-us/windows/forum/all/magnifyexe-zoom-in-from-cmd-command-prompt/48c7257b-c1f8-483c-a0b8-fff24daf1622
https://answers.microsoft.com/en-us/windows/forum/all/magnifyexe-zoom-in-from-cmd-command-prompt/48c7257b-c1f8-483c-a0b8-fff24daf1622
https://support.microsoft.com/en-us/windows/use-magnifier-to-make-things-on-the-screen-easier-to-see-414948ba-8b1c-d3bd-8615-0e5e32204198
https://support.microsoft.com/en-us/windows/use-magnifier-to-make-things-on-the-screen-easier-to-see-414948ba-8b1c-d3bd-8615-0e5e32204198

mstsc.exe (Remote Desktop Connection)
“mstsc.exe” is an executable located at “%windir%\System32\mstsc.exe”, it is also known as
“Remote Desktop Connection”. On a 64-bit system there is also a 32-bit version located at
“%windir%\SysWOW64\mstsc.exe”. It is a PE file which is signed by Microsoft.

Moreover, the name of the executable comes from “Microsoft Terminal Service Client”.
“Terminal Service” was the previous name for the protocol used for the remote connection.
Today it is called “Remote Desktop Protocol” (RDP). “mstsc.exe” is the default client for RDP
that is part of the Windows operating system129. I will write a dedicated writeup about the RDP
protocol itself.

Overall, “mstsc.exe” allows users to connect to a “Remote Session Host” server or remote
computer and to use the GUI interface of the remote system. Also, by using the executable we
can edit “*.rdp” file, which is a remote desktop connection configuration file130. Using
“mstsc.exe” a user can also share its printers/clipboard/audio devices/network drives with the
remote system to which the connection is being done. Lastly, for an implementation reference of
“mstsc.exe” I suggest going over the one in ReacOS131.

131 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/mstsc
130 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/mstsc
129 https://en.wikipedia.org/wiki/Remote_Desktop_Protocol

50

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/mstsc
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/mstsc
https://en.wikipedia.org/wiki/Remote_Desktop_Protocol

curl.exe (cURL executable)
“curl.exe” is a command line tool which allows transferring data with URLs. It supports various
protocols like: FTP/S, HTTP/S, IMAP/S, LDAP/S, MQTT, POP3, SMB/S132. “curl” is a popular
command line tool for Linux133. There is also a version of “curl” for Windows. it is statically
linked with different libraries like: libssh2, brotli, zlib, zstd, nghttp3, nghttp2, cacert134.

Moreover, since build 17063 of Windows 10 (December 2017), Microsoft has announced that
“curl” is going to be shipped by default as part of Windows135. However, “curl.exe” that is
shipped with Windows is handled and built by Microsoft. Microsoft’s version of “curl” uses the
SChannel TLS backend136.

Lastly, there is also a “curl” command as part of Powershell, but it is just an alias to the
“Invoke-WebRequest”cmdlet - as shown in the screenshot below. We can go over the source
code of curl in GitHub137. Using “curl.exe” we can send HTTP GET requests (as shown below),
resuming downloads, specifying max transfer rate and more138.

138 https://www.keycdn.com/support/popular-curl-examples
137 https://github.com/curl/curl
136 https://curl.se/windows/microsoft.html
135 https://learn.microsoft.com/en-us/virtualization/community/team-blog/2017/20171219-tar-and-curl-come-to-windows
134 https://curl.se/windows/
133 https://linux.die.net/man/1/curl
132 https://curl.se/

51

https://www.keycdn.com/support/popular-curl-examples
https://github.com/curl/curl
https://curl.se/windows/microsoft.html
https://learn.microsoft.com/en-us/virtualization/community/team-blog/2017/20171219-tar-and-curl-come-to-windows
https://curl.se/windows/
https://linux.die.net/man/1/curl
https://curl.se/

winver.exe (Version Reporter Applet)
“winver” is the “Version Reporter Applet” which is responsible for displaying information about
the version of the running operating system. It is also referred to as the “Windows Version”
utility139. It is a PE binary file located at “%windir%\System32\winver.exe”, on 64-bit systems
there is also a 32-bit version located at “%windir%\SysWOW64\winver.exe”.

Also, “winver.exe” is signed by Microsoft. It was first include in Windows from “Windows 3.0”,
since “Windows 3.5” it calls the “ShellAbout” function from “shell32.dll”140. Thus, if we have a
version of Windows that does not include “winver.exe”(like Windows PE) we can use
“rundll32.exe”141 to call it with the following command “rundll32 shell32,ShellAbout”.

Moreover, due to the UI changes that have been made in Windows along the way in Windows
caused also for changes in “winver.exe” as shown in the screenshots below142. The examples are
from the following versions of Windows (from left to right): “Windows 3.10”, “Window XP”,
“Windows 2003 Server”, “Windows 7” and “Windows 10”. Lastly, we can checkout the
implementation of “winver.exe” as part of ReacOS143.

143 https://github.com/reactos/reactos/tree/master/base/applications/winver
142 https://betawiki.net/wiki/Winver
141 https://medium.com/@boutnaru/the-windows-process-journey-rundll32-exe-windows-host-process-415132f1363
140 https://learn.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellaboutw
139 https://betawiki.net/wiki/Winver

52

https://github.com/reactos/reactos/tree/master/base/applications/winver
https://betawiki.net/wiki/Winver
https://medium.com/@boutnaru/the-windows-process-journey-rundll32-exe-windows-host-process-415132f1363
https://learn.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellaboutw
https://betawiki.net/wiki/Winver

arp.exe (TCP/IP Arp Command)
“arp.exe” (TCP/IP Arp Command) is a PE binary located at “%windir%\System32\ARP.EXE”.
On 64-bit systems there is also a 32-bit version located at “%windir%\SysWOW64\ARP.EXE”.
Also, the binary file is digitally signed by Microsoft.

Overall, “arp.exe” allows displaying (using the “-a” or “/a” switch - as shown in the screenshot
below) and modifying (using the “-s” or “/s” switch) entries in the ARP (Address Resolution
Protocol) cache. There is a separate table for each network adapter that the system has (which is
connected and has IP information). It is relevant for Ethernet/Token Ring network adapters144.

Basically, ARP is a network protocol used for retrieving the link layer address (like MAC) for a
given internet layer address (like IPv4). By the way, in IPv6 the functionality of ARP is
implemented by NDP (Neighbor Discovery Protocol). Lastly, ARP is a request/response protocol
which is encapsulated by the link layer protocol. Also, it is never routed across inter-networking
entities145.

145 https://en.wikipedia.org/wiki/Address_Resolution_Protocol
144 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/arp

53

https://en.wikipedia.org/wiki/Address_Resolution_Protocol
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/arp

WFS.exe (Microsoft Windows Fax and Scan)
“WFS.exe” (aka the “Microsoft Windows Fax and Scan”) which is an integrated scanning and
faxing app as part of Windows. It is the replacement of the “Fax Console” that was part of
Windows XP. Overall, “WFS.exe” provides the ability to send/receive faxes, emailing/faxing
scanned documents and forwarding faxes as email attachments146.

Also, It is a PE binary file located at “%windir%\System32\WFS.exe” which is digitally signed
by Microsoft. By the way, on a 64-bit system there is only the 64-bit version, there is not a 32-bit
version (in “%windir%\SysWOW64”) like we have with other executables such as “cmd.exe”.

Moreover, in order for “WFS.exe” to operate correctly we need to install it as an “Optional
Feature”147. It is also dependent on the Fax service, which executable is located at
“%windir%\System32\FXSSVC.exe”148.

148https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc725953(v=ws.11)?re
directedfrom=MSDN

147 https://www.intowindows.com/how-to-install-windows-fax-and-scan-in-windows-11/
146 https://en.wikipedia.org/wiki/Windows_Fax_and_Scan

54

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc725953(v=ws.11)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc725953(v=ws.11)?redirectedfrom=MSDN
https://www.intowindows.com/how-to-install-windows-fax-and-scan-in-windows-11/
https://en.wikipedia.org/wiki/Windows_Fax_and_Scan

clip.exe (Copies the Data into Clipboard)
“clip.exe” (copies the data into clipboard) is a PE binary located at
“%windir%\System32\clip.exe”. On 64-bit systems there is also a 32-bit version located at
“%windir%\SysWOW64\clip.exe”. Also, the binary file is a CLI tool which is digitally signed by
Microsoft.

Overall, “clip.exe” is used in order to copy the results of commands into the Windows clipboard.
We can use it in one of the following ways: “command | clip” or “clip < file.txt”149. After using
“clip.exe” the text output can be pasted into another program.

Thus, we can see an example of usage in the screenshot below. In the screenshot we use
“clip.exe” to store an echoed string into the clipboard. Using “osk.exe”
(https://medium.com/@boutnaru/the-windows-process-journey-osk-exe-accessibility-on-screen-
keyboard-72823695321e) aka the “On Screen Keyboard” we send “Ctrl+V” to paste the stored
text into Notepad. Lastly, In powershell we have a cmdlet (“Set-Clipboard”) which does the
same as “clip.exe” (https://ss64.com/ps/set-clipboard.html).

149 https://ss64.com/nt/clip.html

55

https://medium.com/@boutnaru/the-windows-process-journey-osk-exe-accessibility-on-screen-keyboard-72823695321e
https://medium.com/@boutnaru/the-windows-process-journey-osk-exe-accessibility-on-screen-keyboard-72823695321e
https://ss64.com/ps/set-clipboard.html
https://ss64.com/nt/clip.html

consent.exe (Consent UI for Administrative
Applications)
“consent.exe” is the “Consent UI for Administrative Applications” which is called as part of a
UAC (User Account Control) flow150. It is a PE binary file located at
“%windir%\system32\consent.exe”, which is signed digitally by Microsoft. On a 64-bit system
there is no 32-bit version, as we have with other binaries such as “cmd.exe”.

Moreover, as shown in the screenshot below, “consent.exe” is started by the service “Application
Information” which is hosted by “svchost.exe”151. The description of the service states that it
“Facilitates the running of interactive applications with additional administrative privileges. If
this service is stopped, users will be unable to launch applications with the additional
administrative privileges they may require to perform desired user tasks”.

Also, as shown in the screenshot below, although it is running within “session 0” we can see that
“consent.exe” is assigned to “session 2” with the permissions of “NT AUTHORITY\SYSTEM”.
For further security the consent prompt is displayed on the secure desktop, only Windows
processes can access the secure desktop152.

Lastly, if the logged on user is not an administrative account a credentials prompt will be
displayed for getting a username and password for an administrative account - it is also done by
“consent.exe” in a secure desktop153. We can turn off prompting in secure mode with “reg.exe”:
‘REG ADD “HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System" /V
"PromptOnSecureDesktop" /T "REG_DWORD" /D "0x00000000" /F’154.

154 https://stackoverflow.com/questions/4046940/how-to-screen-shot-a-uac-prompt
153 https://securityinternals.blogspot.com/2014/02/the-user-access-control-uac-prompts.html
152 https://learn.microsoft.com/en-us/windows/security/application-security/application-control/user-account-control/how-it-works
151 https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f
150 https://www.file.net/process/consent.exe.html

56

https://stackoverflow.com/questions/4046940/how-to-screen-shot-a-uac-prompt
https://securityinternals.blogspot.com/2014/02/the-user-access-control-uac-prompts.html
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/user-account-control/how-it-works
https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f
https://www.file.net/process/consent.exe.html

getmac.exe (Displays NIC MAC information)
“getmac.exe” is a binary PE file located at “%windir%\System32\getmac.exe”, on 64-bit systems
there is also a 32-bit version located at “%windir%\SysWOW64\getmac.exe”. This is a CLI
application which is digitally signed by Microsoft.

Overall, “getmac.exe” is used for retrieving the MAC (Media Access Control) address for all the
NIC (Network Interface Cards) on the system (both physical and virtual)155. By the way, this is
not the only CLI tool we can use to show the MAC address of NICs - we can also use
“ipconfig.exe” (on which there is going to be a separate writeup) and even “nbtstat.exe” to show
the MAC address of a remote machine (on this there is also going to be a separate writeup).
Lastly, an example output of the command is shown below.

155 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/getmac

57

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/getmac

defrag.exe (Disk Defragmenter Module)
“defrag.exe” (Disk Defragmenter Module) is used to improve system performance by
consolidating fragmented files on local volumes156.

Overall, defragmentation organizes storage by consolidating files/other data saved on the hard
drive. Due to different reasons when files are stored they can be broken down into smaller pieces
(aka fragments) that can be spread across the hard drive. The goal of the defragmentation is to
take scattered data in a hard drive and organize it for more efficient retrieval - as shown in the
diagram below157. The above part is before the process and the lower one is after it.

Moreover, we can’t defragment every file system which exists. There is only support for NTFS,
ReFS and FAT/FAT32 file system volumes. Thus, CD-ROMs/Network drives/volumes locked by
the filesystem are not supported. Also, if the file system is marked as dirty, which might indicate
possible corruption - it can be verified using the command “fsutil dirty”158.

158 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/defrag
157 https://www.avast.com/c-how-to-defrag-pc-hard-drive
156 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/defrag

58

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/defrag
https://www.avast.com/c-how-to-defrag-pc-hard-drive
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/defrag

msedge.exe (Microsoft Edge)
“msedge.exe” is a 64-bit binary which is signed by Microsoft. Although it is a 64-bit binary it is
still located by default in the program files directory of 32-bit applications ("C:\Program Files
(x86)\Microsoft\Edge\Application\msedge.exe"). Microsoft Edge (aka Edge) is a web browser
that is based on chromium which was released on January 15, 2020. It is supported on Windows,
macOS, iOS and Android159. By the way, if you want you can also be part of the “Microsoft Edge
Insider Channel”. This allows you to be from the first who previews what’s new in Edge160.

Moreover, from Windows 10 Enterprise/Pro (versions 1803 and later) or Windows 11 Pro users
can use the “Application Guard” mode of Edge - as shown in the screenshot below. It disables
printing from the application guard window, does not allow copying/pasting between the host PC
and the application guard window and does not permit data persistence between application
guard windows161.

Lastly, In order to enable that we need to enable the “"Windows Defender Application Guard"
feature (it requires the CPU support for virtualization). It launches Edge in an Hyper-V
virtualized isolated environment162. A temporary container is created each time, it is
destroyed/deleted when the user closes all the related windows163.

163 https://blogs.windows.com/msedgedev/2016/09/27/application-guard-microsoft-edge/

162ttps://techcommunity.microsoft.com/t5/windows-insider-program/windows-defender-application-guard-standalone-mode/m-p/
66903

161https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/microsoft-defender-application-g
uard/test-scenarios-md-app-guard

160 https://www.microsoft.com/en-us/edge/download/insider

159https://support.microsoft.com/en-us/microsoft-edge/download-the-new-microsoft-edge-based-on-chromium-0f4a3dd7-55df-60f
5-739f-00010dba52cf

59

https://blogs.windows.com/msedgedev/2016/09/27/application-guard-microsoft-edge/
https://techcommunity.microsoft.com/t5/windows-insider-program/windows-defender-application-guard-standalone-mode/m-p/66903
https://techcommunity.microsoft.com/t5/windows-insider-program/windows-defender-application-guard-standalone-mode/m-p/66903
https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/microsoft-defender-application-guard/test-scenarios-md-app-guard
https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/microsoft-defender-application-guard/test-scenarios-md-app-guard
https://www.microsoft.com/en-us/edge/download/insider
https://support.microsoft.com/en-us/microsoft-edge/download-the-new-microsoft-edge-based-on-chromium-0f4a3dd7-55df-60f5-739f-00010dba52cf
https://support.microsoft.com/en-us/microsoft-edge/download-the-new-microsoft-edge-based-on-chromium-0f4a3dd7-55df-60f5-739f-00010dba52cf

tzutil.exe (Windows Time Zone Utility)
“tzutil.exe” is a binary PE file located at “%windir%\system32\tzutil.exe”. It is used in order to
display/set the time zone of the current system164. On 64-bit systems there is also a 32-bit version
of “tzutil.exe” located at “%windir%\SysWOW64\tzutil.exe”.

Moreover, “tzutil.exe” is a CLI tool which is digitally signed by Microsoft. For displaying the
current time zone ID we use the “/g” switch while for setting the time zone we use the “/s”
switch165. There are different time zones that can be set using this command166, we can also list
them using the “/l” switch.

Lastly, there are cmdlets which are equal to “tzutil.exe” which is called
Get-TimeZone/Set-TimeZone - as shown in the screenshot below.

166 https://ss64.com/nt/timezones.html
165 https://ss64.com/nt/tzutil.html
164 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tzutil

60

https://ss64.com/nt/timezones.html
https://ss64.com/nt/tzutil.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tzutil

expand.exe (LZ Expansion Utility)
“expand.exe” aka “LZ Expansion Utility” is a PE binary located at
“%windir%\System32\expand.exe”. It is used for expanding one or more compressed files. For
example we can use it to retrieve compressed files from distribution disks167. On 64-bit systems
there is also a 32-bit version of “expand.exe” located at “%windir%\SysWOW64\expand.exe”.

Moreover, it is used to uncompress “*.cab” files (cabinet files). “expand.exe” is also called “The
Microsoft File Expansion Utility” and it dates back to MS-DOS 5 in 1990168. The simplest way
to use it could be the following: “expand -d [FILE_NAME].cab” - as shown in the screenshot
below.

Lastly, versions of expand before version 6.0 (Windows 7 timeline) included buggy
implementation of “*.cab” file which include subfolders169.

#Windows #Microsoft #cab #compression #cabinet #Learning #DevOps #DevSecOps
#TheWindowsProcessJourney

169 https://ss64.org/viewtopic.php?t=71
168 https://ss64.com/nt/expand.html
167 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/expand

61

https://ss64.org/viewtopic.php?t=71
https://ss64.com/nt/expand.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/expand

WSReset.exe (Windows Store Reset)
In general, “WSReset.exe” is a PE binary file located at “%windir%\System32\WSReset.exe”
which is also digitally signed by Microsoft. The description (Part of the PE format) states “This
tool resets the Windows Store without changing account settings or deleting installed apps”. By
the way, there is no 32-bit version of “WSRest.exe” on 64-bit systems (like we have with
“cmd.exe” for example).

Thus, we can say “WSReset.exe” is used for clearing the cache of the “Windows Store”170. The
“Windows Store” creates temporary/cookies files in the following directories:
“%UserProfile%\AppData\Local\Packages\Microsoft.WindowsStore_8wekyb3d8bbwe\AC\INet
Cache” and
“%UserProfile%\AppData\Local\Packages\Microsoft.WindowsStore_8wekyb3d8bbwe\AC\INet
Cookies”. So in order to clear the cache the executable just needs to delete the files from those
folders171 - as also shown in the screenshot below.

Lastly, “WSReset.exe” is also auto elevated and during its startup it checks the following registry
value
“HKCU\Software\Classes\AppX82a6gwre4fdg3bt635tn5ctqjf8msdd2\Shell\open\command” for
commands to execute172 - as shown in the screenshot below. This executable is a console tool,
due to that “conhost.exe”173 is also needed as we can see in the screenshot below.

173 https://medium.com/@boutnaru/the-windows-process-journey-conhost-exe-console-window-host-f03f8db35574
172 https://lolbas-project.github.io/lolbas/Binaries/Wsreset/
171 https://daniels-it-blog.blogspot.com/2020/07/arbitrary-file-delete-via-wsresetexe.html
170 https://helpdeskgeek.com/how-to/how-to-clear-windows-store-cache-with-wsreset-exe/

62

https://medium.com/@boutnaru/the-windows-process-journey-conhost-exe-console-window-host-f03f8db35574
https://lolbas-project.github.io/lolbas/Binaries/Wsreset/
https://daniels-it-blog.blogspot.com/2020/07/arbitrary-file-delete-via-wsresetexe.html
https://helpdeskgeek.com/how-to/how-to-clear-windows-store-cache-with-wsreset-exe/

SlideToShutDown.exe (Windows Slide To Shutdown)
“SlideToShutDown.exe” is a PE binary located at
“%windir%\System32\SlideToShutDown.exe”. It can be used in a smart and interactive way for
shutting down Windows. Instead of the traditional way, we can just shutdown the system by
sliding/dragging the window down - as shown in the screenshot below174.

Moreover, on 64-bit systems we don’t have a 32-bit version of “SlideToShutdown.exe” (as we
have with “cmd.exe” for example). The binary is digitally signed by Microsoft. By default, the
“slide to shutdown” should only show if we hold down the power button on a system with a
touch screen175. Lastly, even if we don’t have a touch screen we can use the mouse for
sliding/dragging the window down.

175 https://answers.microsoft.com/en-us/windows/forum/all/slide-to-shut-down/7b7e3f86-ccea-41a4-be8b-74531ea2fcb8

174 https://www.geeksforgeeks.org/creating-slide-to-shut-down-shortcut-in-windows-10/

63

https://answers.microsoft.com/en-us/windows/forum/all/slide-to-shut-down/7b7e3f86-ccea-41a4-be8b-74531ea2fcb8
https://www.geeksforgeeks.org/creating-slide-to-shut-down-shortcut-in-windows-10/

takeown.exe (Takes Ownership of a File)
“takeown.exe” (Takes ownership of a file) is a PE binary located at
“%windir%\System32\takeown.exe”. It is a CLI tool which allows an administrator to recover
access to a file that was denied, it is done by changing the file-ownership176. On 64-bit systems
there is also a 32-bit version of “takeown.exe” located at “%windir%\SysWOW64\takeown.exe”.

Thus, after the ownership of the file/folder is taken the logged-on user is provided with the “full
control” permissions. This allows the user to change the DACL177 of the file/folder178.

Lastly, by default the owner of a securable object179 is based on the entity described by the access
token180 of the process/thread that has created it. It can be changed by the current owner or by a
security context which holds the take ownership (SeTakeOwnershipPrivilege) privilege181.

181 https://medium.com/@boutnaru/windows-security-privileges-b8fe18cf3d5a
180 https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64
179 https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
178 https://appuals.com/takeown/
177 https://medium.com/@boutnaru/the-windows-security-journey-dacl-discretionary-access-control-list-c74545e472ec
176 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/takeow

64

https://medium.com/@boutnaru/windows-security-privileges-b8fe18cf3d5a
https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64
https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
https://appuals.com/takeown/
https://medium.com/@boutnaru/the-windows-security-journey-dacl-discretionary-access-control-list-c74545e472ec
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/takeown

dialer.exe (Microsoft Windows Phone Dialer)
“dialer.exe” (Microsoft Windows Phone Dialer) is a PE binary located at
“%windir%\System32\dialer.exe”, which can be used to dial outgoing voice calls using the
computer. It is done if the system has a modem supporting both voice and data182 .On 64-bit
systems there is also a 32-bit located at %windir%\SysWOW64\dialer.exe.

Thus, “dialer.exe” supports TAPI (Telephony Program Interface) based ActiveVoice183. TAPI is
an API (Application Programming Interface) allowing Windows systems to use the telephony
services184.

Moreover, TPAPI is a COM185 based API that merges classic and IP telephony. It allows voice
mailing, PBX control, basic voice over PSTN (Public Switched Telephone Network), call center
applications, IVR (Interactive Voice Response), multicast multimedia and video conferencing186.
Lastly, we can think about “dialer.exe” as a software based phone - as also shown in the
screenshot below.

186 https://learn.microsoft.com/en-us/windows/win32/tapi/tapi-3-1-start-page
185 https://medium.com/@boutnaru/windows-com-component-object-model-71a76a97435c

184 https://documentation.avaya.com/en-US/bundle/IPOfficeSolutionDescription/page/Telephony_Application_Program_Interface.html

183 https://answers.microsoft.com/en-us/windows/forum/all/dialerexe/b859ea03-f8f5-4b45-ab3a-19ff032763ff
182 https://answers.microsoft.com/en-us/windows/forum/all/how-do-you-set-up-dialer/2aa4ef09-5a6d-4aa1-901b-557ff9ce0ef6

65

https://learn.microsoft.com/en-us/windows/win32/tapi/tapi-3-1-start-page
https://medium.com/@boutnaru/windows-com-component-object-model-71a76a97435c
https://documentation.avaya.com/en-US/bundle/IPOfficeSolutionDescription/page/Telephony_Application_Program_Interface.html
https://answers.microsoft.com/en-us/windows/forum/all/dialerexe/b859ea03-f8f5-4b45-ab3a-19ff032763ff
https://answers.microsoft.com/en-us/windows/forum/all/how-do-you-set-up-dialer/2aa4ef09-5a6d-4aa1-901b-557ff9ce0ef6

bthudtask.exe (Bluetooth Uninstall Device Task)
“bthudtask.exe” is a PE binary located at “%windir%\System32\bthudtask”, which is the
Bluetooth uninstall device task. It is used to remove the pairing with a remote Bluetooth device,
which is specified by service ID187.

Moreover, on 64-bit systems there is also a 32-bit version of the executable located at
“%windir%\SysWOW64\bthudtask.exe%”. Also, the executable is digitally signed by Microsoft
and “auto elevated”.

Thus, the “Task Scheduler” task188 that runs “bthudtask.exe” is “UninstallDeviceTask” which is
located in the following hierarchy “Microsoft->Windows->Bluetooth” - as shown in the
screenshot below. The scheduled task exits after the device is uninstalled189.

Lastly, from the “Actions” tab we can see that the program is started “BthUdTask.exe $(Arg0)”.
This means that the Bluetooth service ID is given as the first argument.

189https://support.microsoft.com/en-gb/topic/description-of-the-scheduled-tasks-in-windows-vista-21f93b44-7260-a612-5ec3-fb2
a7be5563c

188 https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
187 https://www.shouldiblockit.com/bthudtask.exe-91.aspx

66

https://support.microsoft.com/en-gb/topic/description-of-the-scheduled-tasks-in-windows-vista-21f93b44-7260-a612-5ec3-fb2a7be5563c
https://support.microsoft.com/en-gb/topic/description-of-the-scheduled-tasks-in-windows-vista-21f93b44-7260-a612-5ec3-fb2a7be5563c
https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
https://www.shouldiblockit.com/bthudtask.exe-91.aspx

DisplaySwitch.exe (Windows Display Switch)
“DisplaySwitch.exe” is a PE binary located at “%windir%\System32\DisplaySwitch.exe”, it is
used for switching the display based on different options like: PC only, duplicate (mirror), extend
and second screen only - as shown in the screenshot below190. Moreover, “DisplaySwitch.exe” is
signed digitally by Microsoft. On a 64-bit system there is no 32-bit version of
“DisplaySwitch.exe” (like we have for example with “cmd.exe”).

Lastly, on Windows 10 we can pass the following command line arguments:/internal ,/clone,
/extend and /external instead of selecting the option in the GUI. On Windows 11 the switches
have been replaced with numbers: 1 (=/internal), 2 (=/clone), 3 (=/extend) and 4 (=/external).
Keep in mind not to add a space after the number is given as input argument191.

191 https://learn.microsoft.com/en-us/answers/questions/1036148/displayswitch-exe-behavior-on-windows-11-22h2
190 https://learn.microsoft.com/en-us/answers/questions/1036148/displayswitch-exe-behavior-on-windows-11-22h2

67

https://learn.microsoft.com/en-us/answers/questions/1036148/displayswitch-exe-behavior-on-windows-11-22h2
https://learn.microsoft.com/en-us/answers/questions/1036148/displayswitch-exe-behavior-on-windows-11-22h2

SpaceAgent.exe (Storage Spaces Settings)
“SpaceAgent.exe” is a PE binary located at “%windir%\System32\SpaceAgent.exe”. The
description field in the PE format states it is “Storage Spaces Settings”. On 64-bit systems there
is no 32-bit version of the binary - as we have with other binaries like “cmd.exe”192. It is good to
know that the binary itself is also digitally signed by Microsoft.

Overall, “Storage Spaces” allows users to protect data from drive failures. It is a technology
similar to RAID (Redundant Array of Independent Disks), which is implemented in software.
“Storage Spaces” gives us the ability to combine three or more drives into a single pool of
storage. This pool can then be used to create new storage spaces, which typically store multiple
copies of your data for redundancy. So, if a drive fails, our data will still be safe193.

Moreover, “SpaceAgent.exe” is configured to run as a scheduled task using the “Windows
Scheduler”194. We can see that configuration using the “Computer Management” console
(“compmgmt.msc”) - as shown in the screenshot below. The task name is “SpaceAgentTask” and
when executed it runs with the permissions of the “Local System” user - also shown in the
screenshot. The location of the task configuration is in
“%windir%\System32\Tasks\Microsoft\Windows\SpacePort\SpaceAgentTask”.

Lastly, from the manifest’s information as part of the “SpaceAgent.exe” binary, there is a
description field which states: “Management agent for the Storage Spaces control panel applet”.
Thus, if we click the “Storage Spaces” icon as part of the control panel and after that we click on
“"create new pool and storage spaces" an instance of “SpaceAgent.exe” is created.

194 https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
193 https://learn.microsoft.com/en-us/windows-server/storage/storage-spaces/overview
192 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

68

https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
https://learn.microsoft.com/en-us/windows-server/storage/storage-spaces/overview
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

tar.exe (BSD tar Archive Tool)
“tar.exe” is a PE binary located at “%windir%\System32\tar.exe”. It is a command line tool
which enables us to create archives and extract files195. “tar.exe” is based on the “libarchive”196,
you can check out the code on GitHub197. This is referenced by “tar.exe” by using
“%windir%\System32\archiveint.dll”.

Moreover, “tar.exe” was added to Windows 10 (1803) from build 17063 or later as a pre-installed
binary198. There is also a 32-bit version of the binary located at “%windir%\SysWOW64\tar.exe”.
Microsoft also digitally signs the “tar.exe” binary.

Overall, by going over the command line options of “tar.exe” we can see that we can perform
different operations: create archives, list files inside archives, update archives and extract them.
Also, we can compress an archive using gzip/bzip2/xz/lzma and use other formats
ustar/pax/cpio/shar199.

Lastly, when extracting an archive using “tar.exe” we can keep/overwrite existing files, restore
(or not) modification times, write data to stdout (and not disk) and restore ACLs200 and other
permission information (ownership and flags).

200 https://medium.com/@boutnaru/the-windows-security-journey-acl-access-control-list-b7d9a6fe428
199 https://ss64.com/nt/tar.html
198 https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/tar_exe
197 https://github.com/libarchive/libarchive
196 https://libarchive.org/
195 https://learn.microsoft.com/en-us/virtualization/community/team-blog/2017/20171219-tar-and-curl-come-to-windows

69

https://medium.com/@boutnaru/the-windows-security-journey-acl-access-control-list-b7d9a6fe4282
https://ss64.com/nt/tar.html
https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/tar_exe
https://github.com/libarchive/libarchive
https://libarchive.org/
https://learn.microsoft.com/en-us/virtualization/community/team-blog/2017/20171219-tar-and-curl-come-to-windows

timeout.exe (Pauses Command Processing)
“timeout.exe” is a PE binary located at “%windir%\System32\timeout.exe”. It is a command line
tool which enables pausing command processing. By using it we can delay execution for
seconds/minutes as part of a batch file201. By the way, we don’t have “sleep.exe” pre-installed on
Windows, it is part of the “Windows Resource Kit”202.

Moreover, on 64-bit systems of Windows we also have a 32-bit version of “timeout.exe” located
at “%windir%\System32\timeout.exe”. It is also digitally signed by Microsoft. We can specify
using a decimal number the amount of seconds we want to wait. The range is between (-1) to
99999. Using (-1) states to wait indefinitely for a key storkey. There is also an option of ignoring
keystores using “/nobreak”, which can be canceled using “Ctrl+C”203. Lastly, we can see a
couple of examples for using “timeout.exe” in the screenshot below.

203 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/timeout
202 https://ss64.com/nt/sleep.html
201 https://ss64.com/nt/timeout.html

70

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/timeout
https://ss64.com/nt/sleep.html
https://ss64.com/nt/timeout.html

doskey.exe (Keyboard History Utility)
“doskey.exe” (Keyboard History Utility) is a binary PE file located at
“%windir%\system32\doskey.exe”. It is a CLI (command line interface) utility which is used for
recalling previously entered commands. Also, we can use it for editing commands and creating
macros204.

Moreover, after running “doskey.exe” we can use F7 in order to see the buffer/log/history of
commands entered in a menu - as shown in the screenshot below. There are multiple
keys/combinations that “doskey.exe” recognizes like “ALT+F7” which clears the history buffer
and “End” which moves to the end of the line205. Lastly, we can go over a reference
implementation of “doskey.exe” from ReactOS206.

206 https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/doskey
205 https://kb.iu.edu/d/aers
204 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/doskey

71

https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/doskey
https://kb.iu.edu/d/aers
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/doskey

fsquirt.exe (Bluetooth File Transfer)
“fsquirt.exe” is a PE binary located at “%windir%\System32\fsquirt.exe” which is used for
sending/receiving files using Bluetooth. On 64-bit systems there is a 32-bit version located at
“%windir%\SysWOW64\fsquirt.exe”. By the way, the binary is also digitally signed by
Microsoft.

Thus, “fsquirt.exe” is the default Bluetooth file transfer wizard on Windows systems207. The file
transfer can be done between two computer that support Bluetooth, mobile phones or any other
Bluetooth enabled devices208.

Lastly, “fsquirt.exe” is also configured in the registry in the following registry location:
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths”.
The “App Paths” subkey is checked when the ShellExecuteExW209 API function is called (The
same goes for ShellExecuteExA). By registering an application using that subkey we can avoid
the need for modifying the PATH environment variable210.

210 https://learn.microsoft.com/en-us/windows/win32/shell/app-registration
209 https://learn.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecuteexW
208 https://learn.microsoft.com/en-us/windows-hardware/drivers/bluetooth/bluetooth-user-interface
207 https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/fsquirt_exe

72

https://learn.microsoft.com/en-us/windows/win32/shell/app-registration
https://learn.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecuteexW
https://learn.microsoft.com/en-us/windows-hardware/drivers/bluetooth/bluetooth-user-interface
https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/fsquirt_exe

label.exe (Disk Label Utility)
“label.exe” (Disk Label Utility) is a binary PE file located at “%windir%\system32\label.exe”. It
is a CLI (command line interface) utility which is used for creating/changing/deleting the volume
label of a disk211.

Moreover, on an NTFS volume we can use a label with up to 32 characters. On 64-bit systems
there is also a 32-bit version on “label.exe” located at “%windir%\SysWOW64\label.exe”. Both
versions of the PE are signed digitally by Microsoft.

The volume label is displayed in different places like in the “File Explorer” or the output of the
“label.exe” - as marked in the screenshot below. In order to change the label there is a need for
admin privileges - as shown in the screenshot below. Lastly, we can also go over a reference
implementation of “label.exe” as part of ReactOS212.

212 https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/label
211 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/label

73

https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/label
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/label

forfiles.exe (Execute a Command on Selected Files)
“forfiles.exe” is a binary PE file located at “%windir%\system32\forfiles.exe”. It is a CLI
(command line interface) utility which can be used in order to execute a command on selected
files. On 64-bit versions of Windows there is also a 32-bit version of the binary located at
“%windir%\SysWOW64\forfiles.exe”. Also, the file is digitally signed by Microsoft.

Overall, “forfiles.exe” was included as part of Windows 98213 and Windows 2000214 resource
kits, that means it was not part of the standard OS installation. Since Windows Vista it is part of
the executables shipped with the OS215.

Moreover, “forfiles.exe” has multiple command line parameters including: “/S” (recursive
search), “/P” (specifying start directory), “/M” (search pattern mask), “/D” (selecting files by a
last modification time frame), “/?” (displaying help text) and “/C” (specifying what command to
run on each file). When using “/C” we can also use specific variables as part of the command
like “@file” (the file name we are operating on), “@path” (the full path), “@ext” (the file
extension) and more216.

Lastly, we can see an example of using “forfiles.exe” in the screenshot below. In the screenshot
we that for every file in the “C:\troller” directory with a “troller*” pattern in the file name we
execute the type builtin command of “cmd.exe”217.

#Windows #CLI #CommandLine #Learning #DevOps #DevSecOps #security #infosec
#cybersecurity #TheWindowsProcessJourney #forfiles

217 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
216 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/forfiles
215 https://web.archive.org/web/20061109021306/http://computerbits.wordpress.com/2006/07/21/new-command-line-tools-in-vista-beta-2/
214 https://www.activexperts.com/admin/reskit/reskit2000/forfiles/
213 https://web.archive.org/web/20200111203651/https://www.activexperts.com/admin/reskit/reskit98/forfiles/

74

https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/forfiles
https://web.archive.org/web/20061109021306/http://computerbits.wordpress.com/2006/07/21/new-command-line-tools-in-vista-beta-2/
https://www.activexperts.com/admin/reskit/reskit2000/forfiles/
https://web.archive.org/web/20200111203651/https://www.activexperts.com/admin/reskit/reskit98/forfiles/

eudcedit.exe (Private Character Editor)
“eudcedit.exe” is a PE binary located at “%windir%\System32\eudcedit.exe” it is known as the
“Private Character Editor”. In case we want to use our own character/symbol (like in a
document) we can use “eudcedit.exe”. Overall, it provides different tools for creating
symbols/characters including: pencil, brush, eraser, hollow/filled eclipse/rectangles, straight line
and rectangular/freeform selection218.

Overall, we can create a character/symbol in one of two ways. First, creating a new custom one
or second creating a custom one using a pre-existing character/symbol. By the way, on 64-bit
versions of Windows there is also a 32-bit version of the binary located at
“%windir%\SysWOW64\eudcedit.exe”. The binary itself is also digitally signed by Microsoft.

Lastly, “eudcedit.exe” is configured to be auto elevated by default (based on the manifest
information included in the binary itself “<autoElevate>true</autoElevate>”). In the screenshot
below we can see an example of using the editor and all the mentioned tools marked in the left
side of the UI.

218 https://www.thewindowsclub.com/charmap-and-eudcedit-windows-10

75

https://www.thewindowsclub.com/charmap-and-eudcedit-windows-10

wmplayer.exe (Windows Media Player)
“wmplayer.exe” is a PE binary located at “%ProgramFiles(x86)%\Windows Media
Player\wmplayer.exe”. It is used for lt as a media player, which is an application used for playing
multimedia files (video and audio). It can also be used as a media library application - as shown
in the screenshot below. By the way, WMP (Windows Media Player) has been included since
Windows 3.x219. However, since 2022 it is marked as legacy while there is a new UWP based
Media Player introduced in Windows 11220.

Moreover, we can find the new version in the Windows Store. This version is relevant for
Windows 10 (19042.0 or higher) on Mobile/PC/HoloLens/Xbox console/Surface Hub targeting
x86/x64/Arm64 architectures221.

Overall, the “wmplayer.exe” which is executed by default is the 32-bit version of WMP. There
could also be a 64-bit version in the following location: “%ProgramFiles%\Windows Media
Player\wmplayer.exe”. By the way, both versions are digitally signed by Microsoft.

221 https://apps.microsoft.com/detail/9WZDNCRFJ3PT
220 https://en.wikipedia.org/wiki/Windows_Media_Player
219 https://www.youtube.com/watch?v=imAUwsksUlY

76

https://apps.microsoft.com/detail/9WZDNCRFJ3PT?hl=en-US&gl=US
https://en.wikipedia.org/wiki/Windows_Media_Player
https://www.youtube.com/watch?v=imAUwsksUlY

dvdplay.exe (DVD Play Placeholder Application)
“dvdplay.exe” is a PE binary located at “%windir%\System32\dvdplay.exe”. It is used for
launching an application which is capable of playing DVD disks. On 64-bit versions of Windows
there is also a 32-bit version of the binary located at “%windir%\SysWOW64\dvdplay.exe”. The
binary is also digitally signed by Microsoft.

On old versions of Windows (like Windows ME), “dvdplay.exe” was its own application - as
shown in the screenshot below222. However, in new versions (like Windows 10) it is basically
launching “wmplayer.exe” which is the “Windows Media Player”223.

Thus, “dvdplayer.exe” calls the API function “RegGetValueW”224 in order to read the path of
“wmplayer.exe” from the application registration in the registry
“HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\wmplayer.exe\Path”.
Later, it checks if the file exists using the API call “SearchPathW”225. If the file is found it is
started using the API call “CreateProcessW”226.

Lastly, the flow described above aligns with the description found in the PE header which states
it is a palace holder application. This flow is also shown in the screenshot below taken from
Sysinternals’ “Process Monitor” on Windows 10.

226 https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw
225 https://learn.microsoft.com/en-us/windows/win32/api/processenv/nf-processenv-searchpathw
224 https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-reggetvaluew
223 https://medium.com/@boutnaru/the-windows-process-journey-wmplayer-exe-windows-media-player-7d25c370c526
222 www.activewin.com/tips/tips/microsoft/winme/b3.shtml

77

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw
https://learn.microsoft.com/en-us/windows/win32/api/processenv/nf-processenv-searchpathw
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-reggetvaluew
https://medium.com/@boutnaru/the-windows-process-journey-wmplayer-exe-windows-media-player-7d25c370c526
http://www.activewin.com/tips/tips/microsoft/winme/b3.shtml

comp.exe (File Compare Utility)
“comp.exe” is a PE binary located at “%windir%\System32\comp.exe”. It is used for comparing
the content of two files/set of files byte-by-byte. The files compared may be located on the same
drive/directory or on different drive/directory. On 64-bit systems there is also a 32-bit version of
the binary located at “%windir%\SysWOW64\comp.exe”227.

Moreover, the files which are compared can also be in a remote location (SMB share). In case
there is a difference between the compared files the offsets of change with the different values
are displayed - as shown in the screenshot below. By the way, the “comp.exe” binary is also
digitally signed by Microsoft.

Lastly, by using command line arguments we can display the difference in decimal (hex is the
default), compare only a specific number of lines, display the difference in ascii characters and
more228. Also, there is a reference implementation of “comp.exe” as part of ReactOS229.

229 https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/comp
228 https://ss64.com/nt/comp.html
227 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/comp

78

https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/comp
https://ss64.com/nt/comp.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/comp

find.exe (Find String (grep) Utility)
“find.exe” is a PE binary located at “%windir%\System32\find.exe”. On 64-bit systems there is
also a 32-bit version of the binary located at “%windir%\SysWOW64\find.exe”. Both of the
versions are digitally signed by Microsoft. It is used in order to search for patterns of text files
and sends them to the standard input device. Thus, we can use it to filter/find a specific string
using wildcard characters230.

Overall, we can compare the functionality of “find.exe” to those of the “grep” utility231 which is
widely used under Unix/Linux systems. On the other hand it is completely different from the
“find”232 utility used in Unix/Linux systems which is similar to the “forfiles.exe”233 .

Moreover, “find.exe” has different command line switches for: displaying all lines not containing
a specific string (“/V”), counting the number of lines containing a string (“/C”), displaying line
numbers (“/N”) and ignoring the case of characters while searching (“/I”). Also, we can skip (or
not) files that have the offline attribute set234.

Lastly, we can provide a path/s to file/s (including wildcards) we want to search in their content,
pass a standard output of a command as input or just get the input for a prompt by “find.exe”. It
is important to understand that the string we want to search for must be in quotes - as shown in
the screenshot below.

234 https://ss64.com/nt/find.html
233 https://medium.com/@boutnaru/the-windows-process-journey-forfiles-exe-execute-a-command-on-selected-files-3c10a9b2b5cf
232 https://man7.org/linux/man-pages/man1/find.1.html
231 https://man7.org/linux/man-pages/man1/grep.1.html
230 https://en.wikipedia.org/wiki/Find_(Windows)

79

https://ss64.com/nt/find.html
https://medium.com/@boutnaru/the-windows-process-journey-forfiles-exe-execute-a-command-on-selected-files-3c10a9b2b5cf
https://man7.org/linux/man-pages/man1/find.1.html
https://man7.org/linux/man-pages/man1/grep.1.html
https://en.wikipedia.org/wiki/Find_(Windows)

mspaint.exe (Paint)
“mspaint.exe” is a PE binary located at “%windir%\System32\mspaint.exe”. On 64-bit systems
there is also a 32-bit version of the binary located at “%windir%\SysWOW64\mspaint.exe”.
Both of the versions are digitally signed by Microsoft. It is a simple graphic/drawing editor
included as part of the Windows operating system since Windows 1.0. “mspaint.exe” different
editing tools like brushes, shape generators, pens, eraser, color selection, bucket (fill with color)
and magnifier235 - as shown in the screenshot below (It is the Windows 10 version).

Overall, “mspaint.exe” supports different image formats like: Windows bitmap (BMP), PNG,
GIF, JPG and single-page TIFF. By the way, AI art generators (DALL-E based) are going to be
part of Microsoft Paint236.

Moreover, support for layers (adding/removing/merging/duplicating/etc) and support for
opening/saving transparent PNG files had been added to paint237. Those features fit together with
the ability to remove the background of an image238. Lastly, we can check out the reference
implementation of “mspaint.exe” as part of ReactOS239.

239 https://github.com/reactos/reactos/tree/master/base/applications/mspaint
238 https://www.theverge.com/2023/9/7/23863377/microsoft-paint-background-removal-tool
237 https://www.theverge.com/2023/9/18/23879221/microsoft-paint-testing-layers-transparency-photoshop-features
236 https://en.wikipedia.org/wiki/Microsoft_Paint
235 https://mspaint.humanhead.com/#local:bd525d07a1f88

80

https://github.com/reactos/reactos/tree/master/base/applications/mspaint
https://www.theverge.com/2023/9/7/23863377/microsoft-paint-background-removal-tool
https://www.theverge.com/2023/9/18/23879221/microsoft-paint-testing-layers-transparency-photoshop-features
https://en.wikipedia.org/wiki/Microsoft_Paint
https://mspaint.humanhead.com/#local:bd525d07a1f88

services.exe (Service Control Manager)
“services.exe” is a PE binary located at “%windir%\System32\services.exe”. It is part of the
“Service Control Manager” (SCM), it provides an RPC (Remote Procedure Call) server ("RPC
Control\ntsvcs"). By leveraging it, programs can manipulate and configure Windows services240

locally or remotely241. A reference implementation of “services.exe” can be found as part of
ReactOS242.

Overall, “services.exe” is started when Windows starts. It is launched by “wininit.exe”243 on
session 0 and is executed with the permissions and privileges of the “NT
AUTHORITY\SYSTEM” (S-1-5-18) aka “Local System”. The binary is digitally signed by
Microsoft. There are two built-in major tools for communicating with the SCM: “sc.exe” and the
MMC snap-in “services.msc”244 .

Moreover, the SCM provides an interface for performing various tasks as described next.
Starting services/drivers on startup/demand. Maintaining/locking/unlocking the database of
installed services (HKLM\SYSTEM\CurrentControlSet\Services). Transmitting control requests
for running services. Maintaining the status of running drivers and services245.

Lastly, it should be executed only once on a Windows system regardless of the number of logged
in users. By the way, on 64-bit systems unlike other Windows binaries (like “cmd.exe”) we don’t
have a parallel 32-bit version of “services.exe”. We can also use the Win32 API for manipulating
services246. The client-side API for the SCM is implemented as part of
“%windir%\system32\advapi32.dll”247.

247 https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/services_exe/index
246 https://learn.microsoft.com/en-us/windows/win32/api/winsvc/
245 https://learn.microsoft.com/en-us/windows/win32/services/service-control-manager
244 https://medium.com/@boutnaru/the-windows-process-journey-mmc-exe-microsoft-management-console-a584afe66d86
243 https://medium.com/@boutnaru/the-windows-process-journey-wininit-exe-windows-start-up-application-5581bfe6a01e
242 https://github.com/reactos/reactos/tree/master/base/system/services
241 https://publik.tuwien.ac.at/files/publik_273621.pdf
240 https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4

81

https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/services_exe/index
https://learn.microsoft.com/en-us/windows/win32/api/winsvc/
https://learn.microsoft.com/en-us/windows/win32/services/service-control-manager
https://medium.com/@boutnaru/the-windows-process-journey-mmc-exe-microsoft-management-console-a584afe66d86
https://medium.com/@boutnaru/the-windows-process-journey-wininit-exe-windows-start-up-application-5581bfe6a01e
https://github.com/reactos/reactos/tree/master/base/system/services
https://publik.tuwien.ac.at/files/publik_273621.pdf
https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4

sc.exe (Service Control Manager Configuration Tool)
“sc.exe” is a PE binary located at “%windir%\System32\sc.exe”. By the way, on 64-bit systems
there is also a 32-bit version of the binary located at “%windir%\SysWOW64\sc.exe”. Both files
are digitally signed by Microsoft.

Overall, “sc.exe” is used to create/stop/start/query/delete/pause/configure/etc any Windows
service248. For example, “sc.exe query <servicename>” is done by reading a subkey/entries of the
service in the SCM (Service Control Manager) database - as shown in the screenshot below249.
The SCM database is located in the registry in the following location:
“HKLM\SYSTEM\CurrentControlSet\Services”.

Moreover, there are other command line options that can be used with “sc.exe” such as (but not
limited to) viewing the security descriptor of the service (“sdshow”), showing/changing the
description (“qdescription/description”), displaying/modifying the actions that are taken by the
service in case of a failure (“qfailure/failure”), showing dependencies (“EnumDepend”) and
creating/deleting a service (“create/delete”). By the way, “sc.exe” is also used for managing
drivers, which are defined as services which execute in kernel mode - as shown in the screenshot
below - more on that in future writeups250. Lastly, we can go over a reference implementation of
“sc.exe” which is part of ReactOS251.

251 https://github.com/reactos/reactos/tree/master/base/applications/sc
250 https://ss64.com/nt/sc.html
249 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/sc-query
248 https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4

82

https://github.com/reactos/reactos/tree/master/base/applications/sc
https://ss64.com/nt/sc.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/sc-query
https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4

phoneactivate.exe (Phone Activation UI)
“phoneactivate.exe” is a PE binary located at “%windir%\System32\phoneactivate.exe”. Unlike
other binaries there is no 32-bit version of it in Windows 64-bit systems (as we have with
“cmd.exe” for example). The binary is digitally signed by Microsoft.

Overall, we can activate Windows using an internet connection (aka Online activation). Also, we
can activate Windows by phone. In this case we try activating our device over the phone, this
connects us to Microsoft support for our region and country252.

Thus, the goal of “phoneactivate.exe” is to provide the phone activation UI (User Interface). One
common use case for using it is if the Windows license was used in another computer. After the
phone activation is launched we need to choose our country and select next - as shown in the
screenshot below. Then, using the phone numbers shown on the screen we can call the support
agent and provide the installation ID - also shown in the screenshot below253.

Lastly, after verifying the product key and using the installation ID the agent will provide a
confirmation ID for activating Windows. By the way, we can also launch “Contact Support” and
use a chat versus calling.

253 https://www.groovypost.com/howto/save-windows-10-spotlight-lock-screen-pictures/

252https://support.microsoft.com/en-us/windows/product-activation-for-windows-online-support-telephone-numbers-35f6a805-12
59-88b4-f5e9-b52cccef91a0

83

https://www.groovypost.com/howto/save-windows-10-spotlight-lock-screen-pictures/
https://support.microsoft.com/en-us/windows/product-activation-for-windows-online-support-telephone-numbers-35f6a805-1259-88b4-f5e9-b52cccef91a0
https://support.microsoft.com/en-us/windows/product-activation-for-windows-online-support-telephone-numbers-35f6a805-1259-88b4-f5e9-b52cccef91a0

choice.exe (Offers the User a Choice)
“choice.exe” (Offers the user a choice) is a PE binary located at
“%windir%\system32\choice.exe”. It is used for allowing users to select one (single key pressed)
item from a list of choices, it returns the index of the selected choice. By default, we can choose
between “Y” or “N” - as shown in the screenshot below254.

Moreover, we can customize the list of options and a text shown to the user using the different
switches of “choice.exe” (“/C” and /”M” respectively) - as shown in the screenshot below. There
are also other switches that allow us to control behavior of the command like: specify if the
choices are case-sensitive (“/CS”), timeout for selecting one of the choices (“/T”) and more255.

Lastly, on 64-bit systems there is also a 32-bit version of “choice.exe” located at
“%windir%\SysWOW64\choice.exe”. Both the 64-bit version and the 32-bit version are digitally
signed by Microsoft.

255 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/choice
254 https://ss64.com/nt/choice.html

84

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/choice
https://ss64.com/nt/choice.html

qprocess.exe (Query Process Utility)
“qprocess.exe” is a PE binary located at “%windir%\System32\qprocess.exe”. It is used for
displaying information about processes. Also, it supports displaying information about processes
that have been executed on a Remote Desktop Session Host Server 256.

Moreover, as opposed to other executables like “cmd.exe”257, on 64-bit versions of Windows
there is no 32-bit version of “qprocess.exe”. The binary itself is digitally signed by Microsoft.

Lastly, “qprocess.exe” provides different command line switches. Using them we can list all
processes for all sessions (“*”), display processes based on/process id/username/session
name/session ID/program name258 - as shown in the screenshot below.

258 https://ss64.com/nt/query-process.html
257 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
256 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/qprocess

85

https://ss64.com/nt/query-process.html
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/qprocess

rasdial.exe (Remote Access Command Line Dial UI)
“rasdial.exe” is a PE binary located at “%windir%\System32\rasdial.exe”. It is used for
connecting/disconnecting from a VPN (Virtual Private Network)/dial up connection259.

Overall, on 64-bit versions of Windows there is also a 32-bit version of the binary located at
“%windir%\SysWOW64\rasdial.exe”. Both the 64-bit version and the 32-bit version are digitally
signed by Microsoft.

Moreover, using the command line switches of “rasdial.exe” we can provide different
information for a connection. Examples are : a username for connection, a password, a phone
number to connect and a callback number. In case we execute “rasdail.exe” without any
arguments the status of the current connection is displayed260.

Lastly, to specify credentials (username and password) we can execute the following command:
“ rasdial ‘ConnectionName’ ‘Username’ ‘Password’ ”261.

261 https://gist.github.com/stormwild/ec0898fe8bf25f58f4a6bf2576dc5e3f
260 https://ss64.com/nt/rasdial.html
259 https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/ff859533(v=ws.11)

86

https://gist.github.com/stormwild/ec0898fe8bf25f58f4a6bf2576dc5e3f
https://ss64.com/nt/rasdial.html
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/ff859533(v=ws.11)

waitfor.exe (Wait/Send a Signal Over a Network)
“waitfor.exe” is a PE binary located at “%windir%\System32\waitfor.exe”. It is used for
sending/waiting for a signal on a system. We can also use “waitfor.exe” in order to synchronize
between computer systems over the network262.By the way, on 64-bit systems there is also a
32-bit version of the binary located at “%windir%\SysWOW64\waitfor.exe”. Both the 32-bit
version and the 64-bit version are digitally signed by Microsoft.

Overall, “waitfor.exe” is based on the mailslot263 IPC mechanism. When selecting a name for a
signal to wait for, it is used as part of the naming of the mailslot using the following format
“\\.\mailslot\WAITFOR.EXE\[SIGNAL NAME]” - as shown in the screenshot below. The signal
itself is not case sensitive (the same as files in Windows).

Moreover, when using “waitfor.exe” for remote synchronization we can provide the
username/password for authentication using the command line switches (“/u” and “/p”
respectively) and “/” for providing the name/IP of the remote system264.

Lasly, we can think of “waitfor.exe” as a combination of the Linux commands “kill”265 and the
“trap” command266. The first can send signals and the second one can wait for signals. Also,
“tap” can be implemented in different ways such as a builtin command of a shell.

266 https://man7.org/linux/man-pages/man1/trap.1p.html
265 https://man7.org/linux/man-pages/man1/kill.1.html
264 https://ss64.com/nt/waitfor.html
263 https://medium.com/@boutnaru/the-windows-concept-jou-d35f84d8cc02
262 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/waitfor

87

https://man7.org/linux/man-pages/man1/trap.1p.html
https://man7.org/linux/man-pages/man1/kill.1.html
https://ss64.com/nt/waitfor.html
https://medium.com/@boutnaru/the-windows-concept-jou-d35f84d8cc02
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/waitfor

tsdiscon.exe (Session Disconnection Utility)
“tsdiscon.exe” is a PE binary located at “%windir%\System32\tsdiscon.exe”. It is used for
disconnecting from a remote desktop services session. By the way, on 64-bit systems unlike
other binaries like “cmd.exe”267 there is not 32-bit version of “tsdison.exe” in parallel to the
64-bit version.

Overall, using different switches we can specify the ID of the session or the session name that we
want to disconnect. Also, we can provide the name of the terminal server containing the session
we want to disconnect (“/server:<SERVER_NAME>). By the way, if we don’t provide any
session ID/name the current session is going to be disconnected268.

Moreover, there should not be any data loss when disconnecting from a session. The applications
are still running, thus we can reconnect to the session. We must have full control
permissions/disconnect permissions in order to disconnect another user from a session269. This
can also be done for sessions within a virtual machine.

Lastly, when executing “tsdiscon.exe” an event is logged (ID 40) in the event viewer under the
following location “Applications and Services Logs -> Microsoft -> Windows ->
TerminalServices-LocalSessionManager -> Operational” - as shown in the screenshot below. By
the way, “reason code 11” means the user disconnecting from the session initiates the
disconnection270.

270 https://www.anyviewer.com/how-to/session-has-been-disconnected-reason-code-0-2578.html
269 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tsdiscon
268 https://ss64.com/nt/tsdiscon.html
267 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

88

https://www.anyviewer.com/how-to/session-has-been-disconnected-reason-code-0-2578.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tsdiscon
https://ss64.com/nt/tsdiscon.html
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

RunLegacyCPLElevated.exe (Running Legacy
Control Panel Applet in Elevated Mode)
“RunLegacyCPLElevated.exe” is a PE binary located at
“%windir%\System32\RunLegacyCPLElevated.exe”. It is used for running a legacy control
panel applet in elevated mode. On 64-bit Windows systems there is also a 32-bit version of the
binary located at “%windir%\SysWOW64\RunLegacyCPLElevated.exe”. By the way, both
binaries are digitally signed by Microsoft.

Overall, we should execute “RunLegacyCPLElevated.exe” using the following arguments
“RunLegacyCPLElevated.exe shell32.dll, Control_RunDLL <CPL_FILE_PATH_TO_LOAD>”.
An example of execution is “RunLegacyCPLElevated.exe shell32.dll, Control_RunDLL
%windir%\system32\ncpa.cpl” - as shown in the screenshot below.

Moreover, when executing the binary the chain of execution is as follows:
“RunLegacyCPLElevated.exe” performs an RPC call to execute “consent.exe”271, which is
started by the “Application Information” service (hosted by svchost.exe). After that
“RunLegacyCPLElevated.exe” is executed again with the same arguments using the elevated
access token, this is the process that loads and executes the function for the “*.cpl” file - as
shown in the screenshot below.

Lastly, we can think about “RunLegacyCPLElevated.exe” as a “rundll32.exe”272 which starts the
control panel applet with high permissions. Thus, it is similar to executing (without the elevation
part) to “rundll32.exe shell32.dll, Control_RunDLL %windir%\system32\ncpa.cpl”.

272 https://medium.com/@boutnaru/the-windows-process-journey-rundll32-exe-windows-host-process-415132f1363
271 https://medium.com/@boutnaru/the-windows-process-journey-consent-exe-consent-ui-for-administrative-applications-d8e6976e8e40

89

https://medium.com/@boutnaru/the-windows-process-journey-rundll32-exe-windows-host-process-415132f1363
https://medium.com/@boutnaru/the-windows-process-journey-consent-exe-consent-ui-for-administrative-applications-d8e6976e8e40

dism.exe (Deployment Image Servicing and
Management Tool)
“dism.exe” is a PE binary located at “%windir%\System32\dism.exe”. We can use it in order to
enumerate/install/uninstall/configure/update features and packages as part of the Windows
operating system273. On 64 bit systems there is also a 32-bit version of the binary located at
“%windir%\SysWOW64\Dism.exe”. Both binaries are digitally signed by Microsoft.

Overall, “dism.exe” can be used to prepare/service “Windows Images” that can be used for
Windows PE/Windows RE (Recovery Environment)/Windows Setup. It can also service “*.wim”
(Windows Image) files or “*.vhd”/”*.vhdx” (virtual hard disks) files274.

Lastly, “dism.exe” can be executed with elevated permissions which allows parsing of
information of image files and saving changes - as shown in the screenshot below275. Thus,
“dism.exe” can modify offline image files in the different ways such as: ways: add language
packs, add package updates, enable/disable OS features, combine images, adding device
drivers276.

276 https://www.slideserve.com/akamu/cn1176-computer-support-powerpoint-ppt-presentation
275 https://shopperlasopa179.weebly.com/dismexe-wim.html
274 https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/what-is-dism?view=windows-11
273 https://ss64.com/nt/dism.html

90

https://www.slideserve.com/akamu/cn1176-computer-support-powerpoint-ppt-presentation
https://shopperlasopa179.weebly.com/dismexe-wim.html
https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/what-is-dism?view=windows-11
https://ss64.com/nt/dism.html

chkdsk.exe (Check Disk Utility)
“chkdsk.exe” (Check Disk Utility) is a PE binary located at “%windir%\System32\chkdsk.exe”.
On 64-bit systems there is also a 32-bit version located at “%windir%\SysWOW64\chkdsk.exe”.
It is used to check the file-system/file-system metadata of a volume for logical/physical errors. In
order to execute it the user needs to be a member of the local administrator group277.

Moreover, “chkdsk.exe” can not only scan for errors but also fix some of them based on the
different switches given when executing it. If no parameter was given it will run in read-only
mode - as shown in the screenshot below. For fixing structural issues we can use “/f” and to try
recovering data from corrupted parts of the physical drive we can also add “/r”. To dismount the
drive for scanning and fixing we should use “/x”278.

Lastly, “chkdsk.exe” is a CLI tool which is digitally signed by Microsoft. When running a check
“chkdsk.exe” performs 3 main stages: examination of basic filesystem structure, examination of
file name linkage and examination of security descriptors - as shown in the screenshot below.

278 https://www.avg.com/en/signal/how-to-use-chkdsk-windows
277 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk?tabs=event-viewer

91

https://www.avg.com/en/signal/how-to-use-chkdsk-windows
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk?tabs=event-viewer

UserAccountControlSettings.exe (Configuring UAC
Settings)
“UserAccountControlSettings.exe” is a PE binary file located at
“%windir%\system32\UserAccountControlSettings.exe”. On 64-bit systems there is also a 32-bit
version of the file located at “%windir%\SysWOW64\UserAccountControlSettings.exe”. It is
used in order to change the settings of UAC (User Account Control)279. The binary is digitally
signed by Microsoft.

Overall, “UserAccountControlSettings.exe” allows a user to select the level of notifications in
case apps try to install software/change computer settings or whether the user itself tries to do
those things280. There are a total of four levels that we can select from (using the slider) - as
shown in the screenshot below.

First, the lower one is to never notify (whether app/user is trying to install software making
changes to Windows settings). Second, notify only if apps are trying to make changes (not
relevant if the user does that), by the way the desktop won’t be dimmed. Third, as the previous
but dims the desktop (meaning using the secure desktop), it is also the default setting. Fourth,
notify if an app/user is trying to install software/make changes to the Windows settings.

280 https://www.elevenforum.com/t/change-user-account-control-uac-settings-in-windows-11.1523
279 https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/UserAccountControlSettings_exe

92

https://www.elevenforum.com/t/change-user-account-control-uac-settings-in-windows-11.1523/
https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/UserAccountControlSettings_exe

DeviceCensus.exe (Device Information)
“DeviceCensus.exe” is a PE binary located at “%windir%\System32\DeviceCensus.exe”. As
opposed to other executables such as “cmd.exe”281 there is only a 64-bit version of
“DeviceCensus.exe” as part of a 64-bit version of Windows (no parallel 32-bit version). By the
way, the binary is digitally signed by Microsoft.

Overall, “DeviceCensus.exe” is executed by the “Task Scheduler”282 on Windows. There are two
tasks which are configured by default to run “DeviceCensus.exe”: “Device” and “Device User”.
Both of them can be found in the following location in the “Task Scheduler Library”:
“Microsoft\Windows\Device Information” - as shown in the screenshot below. The second one is
executed at log on of every user.

Moreover, “DeviceCensus.exe” accepts as command line arguments the following: “SystemCxt”
(used by the “Device” task) and “UserCxt” (used by the “Device User” task). Each flow which is
triggered based on them calls exported functions from “%windir%\system32\dcntel.dll”. The
first one calls the “RunSystemContextCensus” function and the second calls the
“RunUserContextCensus” function.

Lastly, based on different documentation “DeviceCensus.exe” helps Microsoft improve user
experience by understanding how their products are being used. It is used to collect information
like hardware in use, performance data and most used features. Thus, it is part of telemetry data
collection in Windows283.

283 https://www.file.net/process/devicecensus.exe.html
282 https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
281 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

93

https://www.file.net/process/devicecensus.exe.html
https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

MpCmdRun.exe (Microsoft Malware Protection
Command Line Utility)
“MpCmdRun.exe” is a PE binary located at “C:\ProgramData\Microsoft\Windows
Defender\Platform\[VERSION]\MpCmdRun.exe”. By the way, [VERSION] matches the file
version stored in the PE. Its description states it is the “Microsoft Malware Protection Command
Line Utility”. Also, the binary is also digitally signed by Microsoft. By the way, it is also called
“Microsoft Defender Antivirus command-line utility” as part of the Microsoft documentation284.
It is used as a command line frontend for “Microsoft Malware Protection”.

Moreover, by default there are four Windows schedule tasks285 which are based on
“MpCmdRun.exe” as their action: “Windows Defender Cache Maintenance” (periodic
maintenance task), “Windows Defender Cleanup” (periodic cleanup task), “Windows Defender
Scheduled Scan” (periodic scan task) and “Windows Defender Verification” (periodic
verification task) - as shown in the screenshot below. We can find all of them in the following
location : “Task Scheduler Library->Microsoft->Windows->Windows Defender”.

Lastly, “MpCmdRun.exe” has multiple command line arguments supported in different
categories such as scanning and tracing. We can get information about all the available options
using the “-h” switch or the “?”.

285 https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0

284https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows?view=o365
-worldwide

94

https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows?view=o365-worldwide

MpDefenderCoreService.exe (Antimalware Core
Service)
“MpDefenderCoreService.exe” is a PE binary located at “C:\ProgramData\Microsoft\Windows
Defender\Platform\[VERSION]\MpDefenderCoreService.exe”. By the way, [VERSION]
matches the file version stored in the PE. Its description states it is the “Antimalware Core
Service”. Also, the binary is also digitally signed by Microsoft.

Moreover, “MpDefenderCoreService.exe” can be used as the start image of “Microsoft Defender
Antivirus Core service” (MdCoreSvc). It goal is to improve the stability and performance of
“Windows Defender Antivirus”286. The separation to different services is was not since the
creation of “Microsoft Defender Antivirus” - as shown in the screenshot below287.

Lastly, we can think about it as part of the processes of “Microsoft Defender Antivirus”288

together with processes like: “NisSrv.exe”289 and “MsMpEng.exe”.

289https://medium.com/@boutnaru/the-windows-process-journey-nissrv-exe-microsoft-network-realtime-inspection-service-48b1
245f434c

288https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows?view=o365
-worldwide

287https://techcommunity.microsoft.com/t5/public-sector-blog/december-2023-microsoft-365-us-public-sector-roadmap-newslette
r/ba-p/4010161

286https://github.com/MicrosoftDocs/microsoft-365-docs/blob/public/microsoft-365/security/defender-endpoint/microsoft-defend
er-antivirus-windows.md

95

https://medium.com/@boutnaru/the-windows-process-journey-nissrv-exe-microsoft-network-realtime-inspection-service-48b1245f434c
https://medium.com/@boutnaru/the-windows-process-journey-nissrv-exe-microsoft-network-realtime-inspection-service-48b1245f434c
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows?view=o365-worldwide
https://techcommunity.microsoft.com/t5/public-sector-blog/december-2023-microsoft-365-us-public-sector-roadmap-newsletter/ba-p/4010161
https://techcommunity.microsoft.com/t5/public-sector-blog/december-2023-microsoft-365-us-public-sector-roadmap-newsletter/ba-p/4010161
https://github.com/MicrosoftDocs/microsoft-365-docs/blob/public/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows.md
https://github.com/MicrosoftDocs/microsoft-365-docs/blob/public/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows.md

MsSense.exe (Windows Defender Advanced Threat
Protection Service Executable)
“MsSense.exe” (Windows Defender Advanced Threat Protection Service Executable) is a PE
binary located at “%ProgramFiles%\Windows Defender Advanced Threat
Protection\MsSense.exe”. It is used as the main binary of the “Windows Defender Advanced
Threat Protection Service” (Sense). The description of the services states “Windows Defender
Advanced Threat Protection service helps protect against advanced threats by monitoring and
reporting security events that happen on the computer”.

Moreover, the service is executed using the permissions/privileges of the “Local System” user290.
By the way, “MsSense.exe” is digitally signed by Microsoft. It is dependent on “MsSense.dll”
(Windows Defender Advanced Threat ProtectionSense Library), which by default is located in
the same directory as “MsSense.exe”.

Lastly, the goal of “Windows Defender Advanced Threat Protection” is to help detect,
investigate and respond to advanced attacks (focused on enterprises). This is done by providing
key information about who/what/why the attack happened - as shown in the screenshot below.
Also, it provides response recommendations and time-travel like capabilities (6-months historical
data on state of the machine) - as shown in the screenshot below291.

291 https://blogs.windows.com/windowsexperience/2016/03/01/announcing-windows-defender-advanced-threat-protection/
290 https://medium.com/@boutnaru/the-windows-security-journey-local-system-nt-authority-system-f087dc530588

96

https://blogs.windows.com/windowsexperience/2016/03/01/announcing-windows-defender-advanced-threat-protection/
https://medium.com/@boutnaru/the-windows-security-journey-local-system-nt-authority-system-f087dc530588

lsass.exe (Local Security Authority Process)
“lsass.exe” (Local Security Authority Subsystem Service) is a PE binary located in
“%windir%\System32\lsass.exe”. It is used for enforcing security policy, creating access tokens
for logging on users, writing the security event log and more292.

Moreover, “lsass.exe” can hold valuable authentication data like: kerberos tickets (TGT/TGS),
LM/NT hashes, encrypted password and more293. Thus,. Because “lsass.exe” stores the current
user OS credentials (and can even store domain admin credentials in some cases). Due to that, it
is an appealing target for attacks which can allow them to perform lateral movement. For
hardening “lsass.exe” administrators can: enable it as PPL, enable credential guard, enable
restricted admin mode for RDP and disable WDigest logon294.

Lastly, the “lsass.exe” process is hosting different services inside its own process memory
address space. We have “KeyIso” (CNG Key Isolation) which provides key process isolation to
private keys and associated cryptographic operations as required by Common Criteria. ”SamSs”
(Security Account Manager), the startup of this service signals other services that the SAM is
ready to accept requests. “VaultSvc” (Credential Manager), which is used to provide secure
storage and retrieval of credentials to users/applications/security service packages - as shown in
the screenshot below (taken from Process Explorer). By the way, if the computer is joined into a
domain there will also be a service for network logon.

294 https://www.microsoft.com/en-us/security/blog/2022/10/05/detecting-and-preventing-lsass-credential-dumping-attacks/
293 https://redcanary.com/threat-detection-report/techniques/lsass-memory/
292 https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service

97

https://www.microsoft.com/en-us/security/blog/2022/10/05/detecting-and-preventing-lsass-credential-dumping-attacks/
https://redcanary.com/threat-detection-report/techniques/lsass-memory/
https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service

Taskmgr.exe (Task Manager)
“Tasgmgr.exe” (Task Manager) is a PE binary located in “%windir%\system32\Taskmgr.exe”. It
can be used in order to view/manage current running processes, view system resources usage,
analyze performance and close unresponsive applications by leveraging its user interface295. The
binary is digitally signed by Microsoft.

Overall, since Windows 11 22H2 “Task Manager” has a new design based on Fluent UI and
WinUI. Thus, the classic interface was changed to a hamburger menu layout - as shown in the
screenshot below. We can find the different viewing options: “Processes” (limited information
about each running process) , “Performance” (CPU/memory/IO/networking usage and
performance), “App History” (usage history for UWP applications), “Startup Apps”, “Users”,
“Details” and “Services” on the hamburger menu in the left side of the UI. This has been done to
improve the accessibility in case of touchscreen based devices296.

Lastly, we can go over a reference implementation of “takmgr.exe” as part of ReactOS297. Also,
there are different ways to open “Task Manager” such as (but not limited to):
“CTRL+Shift+ESC”, “CTRL+ALT+DELETE”-> “Task Manager” and “WinKey+X”->”Task
Manager”298. By the way, based on the command line arguments passed to “taskmgr.exe” we can
identify the way in which it was launched299.

299 https://www.hexacorn.com/blog/2018/07/22/taskmgr-exe-slashing-numbers/
298 https://www.howtogeek.com/66622/stupid-geek-tricks-6-ways-to-open-windows-task-manager/
297 https://github.com/reactos/reactos/tree/master/base/applications/taskmgr
296 https://www.bleepingcomputer.com/news/microsoft/hands-on-with-windows-11s-new-task-manager/
295 https://www.spyshelter.com/exe/microsoft-windows-taskmgr-exe/

98

https://www.hexacorn.com/blog/2018/07/22/taskmgr-exe-slashing-numbers/
https://www.howtogeek.com/66622/stupid-geek-tricks-6-ways-to-open-windows-task-manager/
https://github.com/reactos/reactos/tree/master/base/applications/taskmgr
https://www.bleepingcomputer.com/news/microsoft/hands-on-with-windows-11s-new-task-manager/
https://www.spyshelter.com/exe/microsoft-windows-taskmgr-exe/

